Close Menu
  • Home
  • Vaccines
  • Politics
  • Health
  • Tech
  • Sports
  • Research
  • Fitness
  • Careers
What's Hot

Health Canada approves Novartis’ KISQALI® for HR+/HER2- early breast cancer patients at high risk of recurrence

Sheriff, county lawyer seeking mental health funds at Minnesota State Capitol

Chronic absences have not disappeared. Research shows that poor children are most hurt.

Facebook X (Twitter) Instagram
subjectional.com
Subscribe
  • Home
  • Vaccines
  • Politics
  • Health
  • Tech
  • Sports
  • Research
  • Fitness
  • Careers
subjectional.com
Home » Evaluation of adenoviral vector Ad19a encoding RSV-F as novel vaccine against respiratory syncytial virus
Vaccines

Evaluation of adenoviral vector Ad19a encoding RSV-F as novel vaccine against respiratory syncytial virus

Paul E.By Paul E.October 29, 2024No Comments15 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Glezen, W. P., Taber, L. H., Frank, A. L. & Kasel, J. A. Risk of Primary Infection and Reinfection With Respiratory Syncytial Virus. Am. J. Dis. Child 140, 543–546 (1986).

CAS 

Google Scholar 

Laufer, D. A. & Edelson, P. J. Respiratory syncytial virus infection and cardiopulmonary disease. Pediatr. Ann. 16, 644–655 (1987).

Article 
CAS 

Google Scholar 

Borchers, A. T., Chang, C., Gershwin, M. E. & Gershwin, L. J. Respiratory syncytial virus – A comprehensive review. Clin. Rev. Allergy Immunol. 45, 331–379 (2013).

Article 
CAS 

Google Scholar 

Shi, T. et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study. Lancet 390, 946–958 (2017).

Article 

Google Scholar 

Sigurs, N. et al. Asthma and allergy patterns over 18 years after severe RSV bronchiolitis in the first year of life. Thorax 65, 1045–1052 (2010).

Article 

Google Scholar 

Stein, R. T. et al. Respiratory syncytial virus hospitalization and mortality: Systematic review and meta-analysis. Pediatric Pulmonol. 52, 556–569 (2017).

Graham, B. S. Vaccines against respiratory syncytial virus: The time has finally come. Vaccin 34, 3535–3541 (2016).

Article 

Google Scholar 

Falsey, A. R., Hennessey, P. A., Formica, M. A., Cox, C. & Walsh, E. E. Respiratory Syncytial Virus Infection in Elderly and High-Risk Adults. N. Engl. J. Med. 352, 1749–1759 (2005).

Article 
CAS 

Google Scholar 

Elliot, A. J. & Fleming, D. M. Influenza and respiratory syncytial virus in the elderly. Expert Rev. Vaccines 7, 249–258 (2008).

Article 

Google Scholar 

Hall, C. B., Walsh, E. E., Long, C. E. & Schnabel, K. C. Immunity to and frequency of reinfection with respiratory syncytial virus. J. Infect. Dis. 163, 693–698 (1991).

Article 
CAS 

Google Scholar 

Singleton, R., Etchart, N., Hou, S. & Hyland, L. Inability To Evoke a Long-Lasting Protective Immune Response to Respiratory Syncytial Virus Infection in Mice Correlates with Ineffective Nasal Antibody Responses. J. Virol. 77, 11303–11311 (2003).

Article 
CAS 

Google Scholar 

Johnson, S. et al. Development of a humanized monoclonal antibody (MEDI-493) with potent in vitro and in vivo activity against respiratory syncytial virus. J. Infect. Dis. 176, 1215–1224 (1997).

Article 
CAS 

Google Scholar 

Soto, J. A. et al. Current Insights in the Development of Efficacious Vaccines Against RSV. Front. Immunol. 11, 1–5 (2020).

Article 

Google Scholar 

Connor, E. M. Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in hieh-risk infants. the IMpact-RSV study group. Radiology 210, 295–296 (1999).

Google Scholar 

Hammitt, L. L. et al. Nirsevimab for Prevention of RSV in Healthy Late-Preterm and Term Infants. N. Engl. J. Med. 386, 837–846 (2022).

Article 
CAS 

Google Scholar 

Zhu, Q. et al. A highly potent extended half-life antibody as a potential rsv vaccine surrogate for all infants. Sci. Transl. Med. 9, 1–12 (2017).

Article 

Google Scholar 

Domachowske, J. B. et al. Safety, Tolerability and Pharmacokinetics of MEDI8897, an Extended Half-life Single-dose Respiratory Syncytial Virus Prefusion F-targeting Monoclonal Antibody Administered as a Single Dose to Healthy Preterm Infants. Pediatr. Infect. Dis. J. 37, 886–892 (2018).

Article 

Google Scholar 

Muller, W. J. et al. Nirsevimab for Prevention of RSV in Term and Late-Preterm Infants. N. Engl. J. Med. 388, 1533–1534 (2023).

Walsh, E. E. et al. Efficacy and Safety of a Bivalent RSV Prefusion F Vaccine in Older Adults. N. Engl. J. Med. 388, 1465–1477 (2023).

Article 
CAS 

Google Scholar 

Papi, A. et al. Respiratory Syncytial Virus Prefusion F Protein Vaccine in Older Adults. N. Engl. J. Med. 388, 595–608 (2023).

Article 
CAS 

Google Scholar 

Kampmann, B. et al. Bivalent Prefusion F Vaccine in Pregnancy to Prevent RSV Illness in Infants. N. Engl. J. Med. 388, 1451–1464 (2023).

Article 
CAS 

Google Scholar 

Fleming-Dutra, K. E. et al. Use of the Pfizer Respiratory Syncytial Virus Vaccine During Pregnancy for the Prevention of Respiratory Syncytial Virus–Associated Lower Respiratory Tract Disease in Infants: Recommendations of the Advisory Committee on Immunization Practices — United St. MMWR Morb. Mortal. Wkly Rep. 72, 920–925 (2023).

Article 

Google Scholar 

Chanock, R. M., Jensen, K. & Parrott, R. H. Respiratory Syncytial Virus Disease in Infants Despite Prior Administration of Antigenic Inactivated Vaccine. Am. J. Epidemiol. 89, 422–434 (1969).

Article 

Google Scholar 

Polack, F. P. et al. A role for immune complexes in enhanced respiratory syncytial virus disease. J. Exp. Med. 196, 859–865 (2002).

Article 
CAS 

Google Scholar 

Delgado, M. F. et al. Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease. Nat. Med. 15, 34–41 (2009).

Article 
CAS 

Google Scholar 

Murphy, B. R. & Walsh, E. E. Formalin-inactivated respiratory syncytial virus vaccine induces antibodies to the fusion glycoprotein that are deficient in fusion-inhibiting activity. J. Clin. Microbiol. 26, 1595–1597 (1988).

Article 
CAS 

Google Scholar 

Knudson, C. J., Hartwig, S. M., Meyerholz, D. K. & Varga, S. M. RSV Vaccine-Enhanced Disease Is Orchestrated by the Combined Actions of Distinct CD4 T Cell Subsets. PLoS Pathog. 11, 1–23 (2015).

Fazolo, T. et al. Vaccination with RSV M209-223 peptide promotes a protective immune response associated with reduced pulmonary inflammation. Antivir. Res. 157, 102–110 (2018).

Article 
CAS 

Google Scholar 

Olson, M. R. & Varga, S. M. CD8 T Cells Inhibit Respiratory Syncytial Virus (RSV) Vaccine-Enhanced Disease. J. Immunol. 179, 5415–5424 (2007).

Article 
CAS 

Google Scholar 

Olson, M. R., Hartwig, S. M. & Varga, S. M. The Number of Respiratory Syncytial Virus (RSV)-Specific Memory CD8 T Cells in the Lung Is Critical for Their Ability to Inhibit RSV Vaccine-Enhanced Pulmonary Eosinophilia. J. Immunol. 181, 7958–7968 (2008).

Article 
CAS 

Google Scholar 

Hurwitz, J. L. Respiratory syncytial virus vaccine development. Expert Rev. Vaccines 10, 1415–1433 (2011).

Article 

Google Scholar 

Lukens, M. V. et al. Characterization of the CD8+ T cell responses directed against respiratory syncytial virus during primary and secondary infection in C57BL/6 mice. Virology 352, 157–168 (2006).

Article 
CAS 

Google Scholar 

Srikiatkhachorn, A. & Braciale, T. J. Virus-specific CD8+ T lymphocytes downregulate T helper cell type 2 cytokine secretion and pulmonary eosinophilia during experimental murine respiratory syncytial virus infection. J. Exp. Med. 186, 421–432 (1997).

Article 
CAS 

Google Scholar 

Luangrath, M. A., Schmidt, M. E., Hartwig, S. M. & Varga, S. M. Tissue-Resident Memory T Cells in the Lungs Protect against Acute Respiratory Syncytial Virus Infection. ImmunoHorizons 5, 59–69 (2021).

Article 
CAS 

Google Scholar 

Kinnear, E. et al. Airway T cells protect against RSV infection in the absence of antibody. Mucosal Immunol. 11, 249–256 (2018).

Article 
CAS 

Google Scholar 

Varese, A. et al. Type I interferons and MAVS signaling are necessary for tissue resident memory CD8+ T cell responses to RSV infection. PLOS Pathog. 18, e1010272 (2022).

Article 
CAS 

Google Scholar 

Maier, C. et al. Mucosal immunization with an adenoviral vector vaccine confers superior protection against RSV compared to natural immunity. Front. Immunol. 13, 1–15 (2022).

Article 

Google Scholar 

Lipsitch, M., Krammer, F., Regev-Yochay, G., Lustig, Y. & Balicer, R. D. SARS-CoV-2 breakthrough infections in vaccinated individuals: measurement, causes and impact. Nat. Rev. Immunol. 22, 57–65 (2022).

Article 
CAS 

Google Scholar 

Focosi, D., Maggi, F. & Casadevall, A. Mucosal Vaccines, Sterilizing Immunity, and the Future of SARS-CoV-2 Virulence. Viruses 14, 187 (2022).

Article 
CAS 

Google Scholar 

Sheikh-Mohamed, S. et al. Systemic and mucosal IgA responses are variably induced in response to SARS-CoV-2 mRNA vaccination and are associated with protection against subsequent infection. Mucosal. Immunol. 15, 799–808 (2022).

Article 
CAS 

Google Scholar 

Lapuente, D. et al. IL-1β as mucosal vaccine adjuvant: The specific induction of tissue-resident memory T cells improves the heterosubtypic immunity against influenza A viruses article. Mucosal. Immunol. 11, 1265–1278 (2018).

Article 
CAS 

Google Scholar 

Lapuente, D. et al. Protective mucosal immunity against SARS-CoV-2 after heterologous systemic RNA-mucosal adenoviral vector immunization. Nat. Commun. 12, 6871 (2021).

Ambrose, C. S., Wu, X., Jones, T. & Mallory, R. M. The role of nasal IgA in children vaccinated with live attenuated influenza vaccine. Vaccine 30, 6794–6801 (2012).

Article 
CAS 

Google Scholar 

Morabito, K. M. et al. Intranasal administration of RSV antigen-expressing MCMV elicits robust tissue-resident effector and effector memory CD8+ T cells in the lung. Mucosal. Immunol. 10, 545–554 (2017).

Article 
CAS 

Google Scholar 

Morens, D. M., Taubenberger, J. K. & Fauci, A. S. Rethinking next-generation vaccines for coronaviruses, influenzaviruses, and other respiratory viruses. Cell Host Microbe 31, 146–157 (2023).

Article 
CAS 

Google Scholar 

Turner, D. L. et al. Lung niches for the generation and maintenance of tissue-resident memory T cells. Mucosal. Immunol. 7, 501–510 (2014).

Article 
CAS 

Google Scholar 

Rigter, A. et al. A Protective and Safe Intranasal RSV Vaccine Based on a Recombinant Prefusion-Like Form of the F Protein Bound to Bacterium-Like Particles. PLoS One 8, e71072 (2013).

Article 
CAS 

Google Scholar 

Ascough, S. et al. Local and Systemic Immunity against Respiratory Syncytial Virus Induced by a Novel Intranasal Vaccine A Randomized, Double-Blind, Placebo-controlled Clinical Trial. Am. J. Respir. Crit. Care Med. 200, 481–492 (2019).

Article 
CAS 

Google Scholar 

Scaggs Huang, F. et al. Safety and immunogenicity of an intranasal sendai virus-based vaccine for human parainfluenza virus type I and respiratory syncytial virus (SeVRSV) in adults. Hum. Vaccines Immunother. 17, 554–559 (2021).

Article 
CAS 

Google Scholar 

Lapuente, D., Ruzsics, Z., Thirion, C. & Tenbusch, M. Evaluation of adenovirus 19a as a novel vector for mucosal vaccination against influenza A viruses. Vaccine 36, 2712–2720 (2018). Available from: http://www.ncbi.nlm.nih.gov/pubmed/29628150.

Mast, T. C. et al. International epidemiology of human pre-existing adenovirus (Ad) type-5, type-6, type-26 and type-36 neutralizing antibodies: Correlates of high Ad5 titers and implications for potential HIV vaccine trials. Vaccine 28, 950–957 (2010).

Article 
CAS 

Google Scholar 

Buchbinder, S. P. et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 372, 1881–1893 (2008).

Article 
CAS 

Google Scholar 

Dudareva, M. et al. Prevalence of serum neutralizing antibodies against chimpanzee adenovirus 63 and human adenovirus 5 in Kenyan Children, in the context of vaccine vector efficacy. Vaccine 27, 3501–3504 (2009).

Article 
CAS 

Google Scholar 

Nidetz, N. F. et al. Adeno-associated viral vector-mediated immune responses: Understanding barriers to gene delivery. Pharm. Ther. 207, 107453 (2020).

Article 
CAS 

Google Scholar 

Marcandalli, J. et al. Induction of Potent Neutralizing Antibody Responses by a Designed Protein Nanoparticle Vaccine for Respiratory Syncytial Virus. Cell 176, 1420–1431.e17 (2019).

Article 
CAS 

Google Scholar 

Verhoeven, D., Teijaro, J. R. & Farber, D. L. Pulse-oximetry accurately predicts lung pathology and the immune response during influenza infection. Virology 390, 151–156 (2009).

Article 
CAS 

Google Scholar 

Afkhami, S. et al. Respiratory mucosal delivery of next-generation COVID-19 vaccine provides robust protection against both ancestral and variant strains of SARS-CoV-2. Cell 185, 896–915.e19 (2022).

Article 
CAS 

Google Scholar 

Uytingco, C. R. & Martens, J. R. Intranasal delivery of adenoviral and AAV vectors for transduction of the mammalian peripheral olfactory system. Methods Mol. Biol. 1950, 283–297 (2019).

Article 
CAS 

Google Scholar 

Tutykhina, I. L. et al. Development of adenoviral vector-based mucosal vaccine against influenza. J. Mol. Med. 89, 331–341 (2011).

Article 
CAS 

Google Scholar 

Espeseth, A. S. et al. Modified mRNA/lipid nanoparticle-based vaccines expressing respiratory syncytial virus F protein variants are immunogenic and protective in rodent models of RSV infection. npj Vaccines 5, 16 (2020).

Article 
CAS 

Google Scholar 

Bergelson, J. M. et al. Isolation of a Common Receptor for Coxsackie B Viruses and Adenoviruses 2 and 5. Science 275, 1320–1323 (1997).

Article 
CAS 

Google Scholar 

Tomko, R. P., Xu, R. & Philipson, L. HCAR and MCAR: The human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc. Natl Acad. Sci. USA 94, 3352–3356 (1997).

Article 
CAS 

Google Scholar 

Raschperger, E. et al. The coxsackie- and adenovirus receptor (CAR) is an in vivo marker for epithelial tight junctions, with a potential role in regulating permeability and tissue homeostasis. Exp. Cell Res. 312, 1566–1580 (2006).

Article 
CAS 

Google Scholar 

Adams, W. C. et al. Adenovirus serotype 5 infects human dendritic cells via a coxsackievirus-adenovirus receptor-independent receptor pathway mediated by lactoferrin and DC-SIGN. J. Gen. Virol. 90, 1600–1610 (2009).

Article 
CAS 

Google Scholar 

Arnberg, N., Kidd, A. H., Edlund, K., Olfat, F. & Wadell, G. Initial Interactions of Subgenus D Adenoviruses with A549 Cellular Receptors: Sialic Acid versus α v Integrins. J. Virol. 74, 7691–7693 (2000).

Article 
CAS 

Google Scholar 

Cohen, M. et al. Influenza A penetrates host mucus by cleaving sialic acids with neuraminidase. Virol. J. 10, 1 (2013).

Article 

Google Scholar 

Crespo, H. J., Lau, J. T. Y. & Videira, P. A. Dendritic cells: A spot on sialic acid. Front. Immunol. 4, 1–15 (2013).

Article 
CAS 

Google Scholar 

Kiener, R. et al. Vaccine vectors based on Adenovirus 19a/64 exhibit broad cellular tropism and potently restimulate HCMV-specific T cell responses ex vivo. Sci. Rep. 8, 1–13 (2018).

Article 
CAS 

Google Scholar 

Johnstone, R. W., Loveland, B. E. & McKenzie, I. F. C. Identification and quantification of complement regulator CD46 on normal human tissues. Immunology 79, 341–347 (1993).

CAS 

Google Scholar 

Verhaagh, S. et al. Human CD46-transgenic mice in studies involving replication-incompetent adenoviral type 35 vectors. J. Gen. Virol. 87, 255–265 (2006).

Article 
CAS 

Google Scholar 

Nimmerjahn, F. & Ravetch, J. V. Divergent Immunoglobulin G Subclass Activity through Selective Fc Receptor Binding Author (s): Falk Nimmerjahn and Jeffrey V. Ravetch. Science 310, 1510–1512 (2014).

Article 

Google Scholar 

Baazim, H. et al. CD8+ T cells induce cachexia during chronic viral infection. Nat. Immunol. 20, 701–710 (2019). Available from.

Article 
CAS 

Google Scholar 

Schenkel, J. M. et al. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science 346, 98–101 (2014).

Article 
CAS 

Google Scholar 

Schmidt, M. E. et al. Memory CD8 T cells mediate severe immunopathology following respiratory syncytial virus infection. PLoS Pathog. 14, e1006810 (2018).

Article 

Google Scholar 

Rutigliano, J. A. & Graham, B. S. Prolonged Production of TNF-α Exacerbates Illness during Respiratory Syncytial Virus Infection. J. Immunol. 173, 3408–3417 (2004).

Article 
CAS 

Google Scholar 

Bem, R. A. et al. Activation of the granzyme pathway in children with severe respiratory syncytial virus infection. Pediatr. Res. 63, 650–655 (2008).

Article 
CAS 

Google Scholar 

Bem, R. A. et al. Granzyme A- and B-Cluster Deficiency Delays Acute Lung Injury in Pneumovirus-Infected Mice. J. Immunol. 184, 931–938 (2010).

Article 
CAS 

Google Scholar 

Hashimoto, S. et al. Upregulation of Two Death Pathways of Perforin / Granzyme and FasL / Fas in Septic. Am. J. Physiol. Lung Cell Mol. Physiol. 275, L1040–L1050 (1998).

Google Scholar 

Rosato, P. C. et al. Tissue-resident memory T cells trigger rapid exudation and local antibody accumulation. Mucosal. Immunol. 16, 17–26 (2023).

Article 
CAS 

Google Scholar 

Sealy, R. E., Surman, S. L., Vogel, P. & Hurwitz, J. L. Antibody-secreting cells in respiratory tract tissues in the absence of eosinophils as supportive partners. Int. Immunol. 28, 559–564 (2016).

Article 
CAS 

Google Scholar 

Surman, S. L., Jones, B. G., Sealy, R. E., Rudraraju, R. & Hurwitz, J. L. Oral retinyl palmitate or retinoic acid corrects mucosal IgA responses toward an intranasal influenza virus vac- cine in vitamin A deficient mice. Vaccine 32, 2521–2524 (2014).

Article 
CAS 

Google Scholar 

Mazanec, M. B., Coudret, C. L. & Fletcher, D. R. Intracellular neutralization of influenza virus by immunoglobulin A anti-hemagglutinin monoclonal antibodies. J. Virol. 69, 1339–1343 (1995).

Article 
CAS 

Google Scholar 

Murphy, B. R. et al. Effect of age and preexisting antibody on serum antibody response of infants and children to the F and G glycoproteins during respiratory syncytial virus infection. J. Clin. Microbiol. 24, 894–898 (1986).

Article 
CAS 

Google Scholar 

Wiegand, M. A. et al. A Respiratory Syncytial Virus Vaccine Vectored by a Stable Chimeric and Replication-Deficient Sendai Virus Protects Mice without Inducing Enhanced Disease. J. Virol. 91, e02298–16 (2017).

Article 

Google Scholar 

Zohar, T. et al. Upper and lower respiratory tract correlates of protection against respiratory syncytial virus following vaccination of nonhuman primates. Cell Host Microbe 30, 41–52.e5 (2022).

Article 
CAS 

Google Scholar 

Shiver, J. W. & Emini, E. A. Recent advances in the development of HIV-1 vaccines using replication-incompetent adenovirus vectors. Annu. Rev. Med. 55, 355–372 (2004).

Article 
CAS 

Google Scholar 

Alonso-Padilla, J. et al. Development of novel adenoviral vectors to overcome challenges observed with HAdV-5-based constructs. Mol. Ther. 24, 6–16 (2016).

Article 
CAS 

Google Scholar 

Aoki, K. & Tagawa, Y. A twenty-one year surveillance of adenoviral conjunctivitis in Sapporo, Japan. Int Ophthalmol. Clin. 42, 49–54 (2002).

Article 

Google Scholar 

Vogels, R. et al. Replication-Deficient Human Adenovirus Type 35 Vectors for Gene Transfer and Vaccination: Efficient Human Cell Infection and Bypass of Preexisting Adenovirus Immunity. J. Virol. 77, 8263–8271 (2003).

Article 
CAS 

Google Scholar 

Thirion, C. et al. Adenovirus vectors based on human adenovirus type 19a have high potential for human muscle-directed gene therapy. Hum. Gene Ther. 17, 193–205 (2006).

Article 
CAS 

Google Scholar 

Freitag, T. L. et al. Intranasal administration of adenoviral vaccines expressing SARS-CoV-2 spike protein improves vaccine immunity in mouse models. Vaccine 41, 3233–3246 (2023).

Article 
CAS 

Google Scholar 

Klok, F. A., Pai, M., Huisman, M. V. & Makris, M. Vaccine-induced immune thrombotic thrombocytopenia. Lancet Haematol. 9, e73–e80 (2022).

Article 
CAS 

Google Scholar 

Greinacher, A. et al. Pathogenesis of vaccine-induced immune thrombotic thrombocytopenia (VITT). Semin Hematol. 59, 97–107 (2022).

Article 

Google Scholar 

Cines, D. B. & Greinacher, A. Vaccine-induced immune thrombotic thrombocytopenia. Blood 141, 1659–1665 (2023).

Article 
CAS 

Google Scholar 

McGonagle, D., De Marco, G. & Bridgewood, C. Mechanisms of Immunothrombosis in Vaccine-Induced Thrombotic Thrombocytopenia (VITT) Compared to Natural SARS-CoV-2 Infection. J. Autoimmun. 121, 102662 (2021).

Article 
CAS 

Google Scholar 

Stab, V. et al. Protective Efficacy and Immunogenicity of a Combinatory DNA Vaccine against Influenza A Virus and the Respiratory Syncytial Virus. PLoS One 8, e72217 (2013).

Ternette, N., Stefanou, D., Kuate, S., Uberla, K. & Grunwald, T. Expression of RNA virus proteins by RNA polymerase II dependent expression plasmids is hindered at multiple steps. Virol. J. 4, 51 (2007).

Article 

Google Scholar 

Lapuente, D. et al. Innate signalling molecules as genetic adjuvants do not alter the efficacy of a DNA-based influenza A vaccine. PLoS One 15, 1–22 (2020).

Article 

Google Scholar 

Hallak, L. K., Spillmann, D., Collins, P. L. & Peeples, M. E. Glycosaminoglycan Sulfation Requirements for Respiratory Syncytial Virus Infection. J. Virol. 74, 10508–10513 (2000).

Article 
CAS 

Google Scholar 

Vieira Antão, A. et al. Filling two needs with one deed: a combinatory mucosal vaccine against influenza A virus and respiratory syncytial virus. Front. Immunol. 15, 1–13 (2024).

Article 

Google Scholar 

Anderson, K. G. et al. Cutting Edge: Intravascular Staining Redefines Lung CD8 T Cell Responses. J. Immunol. 189, 2702–2706 (2012).

Article 
CAS 

Google Scholar 



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleHarris to label President Trump ‘unstable and revenge-obsessed’ in 2024 election closing argument: Live Updates
Next Article Seneca High School Health Academy students earn medical scrubs.
Paul E.
  • Website

Related Posts

Kentucky leaders emphasize whooping cough vaccination

October 31, 2024

Safety, efficacy and immunogenicity of aerosolized Ad5-nCoV COVID-19 vaccine in a non-inferiority randomized controlled trial

October 31, 2024

Trust is important, but increasing vaccination rates also requires three things

October 31, 2024
Leave A Reply Cancel Reply

Latest Posts

Health Canada approves Novartis’ KISQALI® for HR+/HER2- early breast cancer patients at high risk of recurrence

Sheriff, county lawyer seeking mental health funds at Minnesota State Capitol

Chronic absences have not disappeared. Research shows that poor children are most hurt.

Transport Secretary reveals overhaul of aging pneumatic transport systems

Latest Posts

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Welcome to Subjectional!

At Subjectional, we believe that informed opinions are the foundation of a vibrant society. Our mission is to provide insightful, engaging, and balanced information across a diverse range of topics that matter to you. Whether you’re interested in the latest developments in health, navigating the complexities of politics, staying updated on sports, exploring technological advancements, or advancing your career, we’ve got you covered.

Facebook X (Twitter) Instagram Pinterest YouTube

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Facebook X (Twitter) Instagram Pinterest
  • Home
  • About Us
  • Advertise with Us
  • Contact us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 subjectional. Designed by subjectional.

Type above and press Enter to search. Press Esc to cancel.