Close Menu
  • Home
  • Vaccines
  • Politics
  • Health
  • Tech
  • Sports
  • Research
  • Fitness
  • Careers
What's Hot

Health Canada approves Novartis’ KISQALI® for HR+/HER2- early breast cancer patients at high risk of recurrence

Sheriff, county lawyer seeking mental health funds at Minnesota State Capitol

Chronic absences have not disappeared. Research shows that poor children are most hurt.

Facebook X (Twitter) Instagram
subjectional.com
Subscribe
  • Home
  • Vaccines
  • Politics
  • Health
  • Tech
  • Sports
  • Research
  • Fitness
  • Careers
subjectional.com
Home » Vaccination against rapidly evolving pathogens and the entanglements of memory
Vaccines

Vaccination against rapidly evolving pathogens and the entanglements of memory

Paul E.By Paul E.October 9, 2024No Comments18 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Davenport, F. M. & Hennessy, A. V. Predetermination by infection and by vaccination of antibody response to influenza virus vaccines. J. Exp. Med. 106, 835–850 (1957).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Davenport, F. M., Hennessy, A. V., Stuart-Harris, C. H. & Francis, T. Jr. Epidemiology of influenza; comparative serological observations in England and the United States. Lancet 269, 469–474 (1955).

Article 
CAS 
PubMed 

Google Scholar 

Jensen, K. E., Davenport, F. M., Hennessy, A. V. & Francis, T. Jr. Characterization of influenza antibodies by serum absorption. J. Exp. Med. 104, 199–209 (1956).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

de St Groth, F. & Webster, R. G. Disquisitions of original antigenic sin. I. Evidence in man. J. Exp. Med. 124, 331–345 (1966).

Article 

Google Scholar 

Hoskins, T. W., Davies, J., Smith, A. J., Miller, C. & Allchin, A. Assessment of inactivated influenza-A vaccine after three outbreaks of influenza A at Christ’s Hospital. Lancet 313, 33–35 (1979).

Article 

Google Scholar 

Keitel, W. A., Cate, T. R. & Couch, R. B. Efficacy of sequential annual vaccination with inactivated influenza virus vaccine. Am. J. Epidemiol. 127, 353–364 (1988).

Article 
CAS 
PubMed 

Google Scholar 

Keitel, W. A., Cate, T. R., Couch, R. B., Huggins, L. L. & Hess, K. R. Efficacy of repeated annual immunization with inactivated influenza virus vaccines over a five year period. Vaccine 15, 1114–1122 (1997).

Article 
CAS 
PubMed 

Google Scholar 

Beyer, W. E., de Bruijn, I. A., Palache, A. M., Westendorp, R. G. & Osterhaus, A. D. Protection against influenza after annually repeated vaccination: a meta-analysis of serologic and field studies. Arch. Intern. Med. 159, 182–188 (1999).

Article 
CAS 
PubMed 

Google Scholar 

Gostic, K. M., Ambrose, M., Worobey, M. & Lloyd-Smith, J. O. Potent protection against H5N1 and H7N9 influenza via childhood hemagglutinin imprinting. Science 354, 722–726 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Gostic, K. M. et al. Childhood immune imprinting to influenza A shapes birth year-specific risk during seasonal H1N1 and H3N2 epidemics. PLoS Pathog. 15, e1008109 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Arevalo, P., McLean, H. Q., Belongia, E. A. & Cobey, S. Earliest infections predict the age distribution of seasonal influenza A cases. eLife 9, 19001875 (2020).

Article 

Google Scholar 

Tsang, T. K. et al. Investigation of the impact of childhood immune imprinting on birth year-specific risk of clinical infection during influenza A virus epidemics in Hong Kong. J. Infect. Dis. 228, 169–172 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Koutsakos, M. & Ellebedy, A. H. Immunological imprinting: understanding COVID-19. Immunity 56, 909–913 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Liang, C.-Y. et al. Imprinting of serum neutralizing antibodies by Wuhan-1 mRNA vaccines. Nature 630, 950–960 (2024).

Article 
CAS 
PubMed 

Google Scholar 

Yisimayi, A. et al. Repeated Omicron exposures override ancestral SARS-CoV-2 immune imprinting. Nature 625, 148–156 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Kim, J. H., Skountzou, I., Compans, R. & Jacob, J. Original antigenic sin responses to influenza viruses. J. Immunol. 183, 3294–3301 (2009).

Article 
CAS 
PubMed 

Google Scholar 

Monto, A. S., Malosh, R. E., Petrie, J. G. & Martin, E. T. The doctrine of original antigenic sin: separating good from evil. J. Infect. Dis. 215, 1782–1788 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Linderman, S. L. & Hensley, S. E. Antibodies with ‘original antigenic sin’ properties are valuable components of secondary immune responses to influenza viruses. PLoS Pathog. 12, e1005806 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Yewdell, J. W. & Santos, J. J. S. Original antigenic sin: how original? How sinful? Cold Spring Harb. Perspect. Med. 11, a038786 (2021).

CAS 

Google Scholar 

Erbelding, E. J. et al. A universal influenza vaccine: the strategic plan for the National Institute of Allergy and Infectious Diseases. J. Infect. Dis. 218, 347–354 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Fonville, J. M. et al. Antibody landscapes after influenza virus infection or vaccination. Science 346, 996–1000 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wrammert, J. et al. Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J. Exp. Med. 208, 181–193 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Ellebedy, A. H. et al. Induction of broadly cross-reactive antibody responses to the influenza HA stem region following H5N1 vaccination in humans. Proc. Natl Acad. Sci. USA 111, 13133–13138 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Andrews, S. F. et al. Immune history profoundly affects broadly protective B cell responses to influenza. Sci. Transl. Med. 7, 316ra192 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar 

Hoehn, K. B. et al. Human B cell lineages associated with germinal centers following influenza vaccination are measurably evolving. eLife 10, e70873 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Henry, C. et al. Influenza virus vaccination elicits poorly adapted B cell responses in elderly individuals. Cell Host Microbe 25, 357–366 (2019).

CAS 

Google Scholar 

Lee, J. et al. Persistent antibody clonotypes dominate the serum response to influenza over multiple years and repeated vaccinations. Cell Host Microbe 25, 367–376 (2019).

CAS 

Google Scholar 

Lee, J. et al. Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination. Nat. Med. 22, 1456–1464 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Dugan, H. L. et al. Preexisting immunity shapes distinct antibody landscapes after influenza virus infection and vaccination in humans. Sci. Transl. Med. 12, eabd3601 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Teoh, Z. et al. Factors associated with prolonged respiratory virus detection from polymerase chain reaction of nasal specimens collected longitudinally in healthy children in a US birth cohort. J. Pediatr. Infect. Dis. Soc. 13, 189–195 (2024).

Article 
CAS 

Google Scholar 

Hoy, G. et al. Increased influenza severity in children in the wake of SARS-CoV-2. Influenza Other Respir. Viruses 17, e13178 (2023).

Article 
CAS 

Google Scholar 

Maier, H. E. et al. The Nicaraguan Pediatric Influenza Cohort Study, 2011–2019: influenza incidence, seasonality, and transmission. Clin. Infect. Dis. 76, e1094–e1103 (2023).

Article 
PubMed 

Google Scholar 

Johnston, T. S. et al. Immunological imprinting shapes the specificity of human antibody responses against SARS-CoV-2 variants. Immunity 57, 912–925 (2024).

Article 
CAS 
PubMed 

Google Scholar 

Tortorici, M. A. et al. Persistent immune imprinting occurs after vaccination with the COVID-19 XBB.1.5 mRNA booster in humans. Immunity 57, 904–911 (2024).

Article 
CAS 
PubMed 

Google Scholar 

Alsoussi, W. B. et al. SARS-CoV-2 Omicron boosting induces de novo B cell response in humans. Nature 617, 592–598 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Addetia, A. et al. Neutralization, effector function and immune imprinting of Omicron variants. Nature 621, 592–601 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Carreño, J. M., Singh, G., Simon, V., Krammer, F. & PVI study group. Bivalent COVID-19 booster vaccines and the absence of BA.5-specific antibodies. Lancet Microbe 4, e569 (2023).

Article 
PubMed 

Google Scholar 

Turner, J. S. et al. Human germinal centres engage memory and naive B cells after influenza vaccination. Nature 586, 127–132 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Cobey, S. et al. Poor immunogenicity, not vaccine strain egg adaptation, may explain the low H3N2 influenza vaccine effectiveness in 2012–2013. Clin. Infect. Dis. 67, 327–333 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Schiepers, A. et al. Molecular fate-mapping of serum antibody responses to repeat immunization. Nature 615, 482–489 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Krammer, F. et al. Antibody responses in seropositive persons after a single dose of SARS-CoV-2 mRNA vaccine. N. Engl. J. Med. 384, 1372–1374 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Srivastava, K. et al. SARS-CoV-2-infection- and vaccine-induced antibody responses are long lasting with an initial waning phase followed by a stabilization phase. Immunity 57, 587–599 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Rodda, L. B. et al. Imprinted SARS-CoV-2-specific memory lymphocytes define hybrid immunity. Cell 185, 1588–1601 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Pape, K. A. et al. High-affinity memory B cells induced by SARS-CoV-2 infection produce more plasmablasts and atypical memory B cells than those primed by mRNA vaccines. Cell Rep. 37, 109823 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Auladell, M. et al. Influenza virus infection history shapes antibody responses to influenza vaccination. Nat. Med. 8, 363–372 (2022).

Article 

Google Scholar 

Khan, K. et al. Omicron infection enhances Delta antibody immunity in vaccinated persons. Nature 607, 356–359 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Pušnik, J. et al. Vaccination impairs de novo immune response to Omicron breakthrough infection, a precondition for the original antigenic sin. Nat. Commun. 15, 3102 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar 

Thompson, M. G. et al. Effects of repeated annual inactivated influenza vaccination among healthcare personnel on serum hemagglutinin inhibition antibody response to A/Perth/16/2009 (H3N2)-like virus during 2010–11. Vaccine 34, 981–988 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Fox, A. et al. Opposing effects of prior infection versus prior vaccination on vaccine immunogenicity against influenza A(H3N2) viruses. Viruses 14, 470 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Zost, S. J. et al. Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains. Proc. Natl Acad. Sci. USA 114, 12578–12583 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Gouma, S. et al. Comparison of human H3N2 antibody responses elicited by egg-based, cell-based, and recombinant protein-based influenza vaccines during the 2017–2018 season. Clin. Infect. Dis. 71, 1447–1453 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Flannery, B., Lipsitch, M. & Cobey, S. Reduced effectiveness of repeat influenza vaccination: distinguishing among within-season waning, recent clinical infection, and subclinical infection. J. Infect. Dis. https://doi.org/10.1093/infdis/jiae220 (2024).

Gouma, S. et al. Middle-aged individuals may be in a perpetual state of H3N2 influenza virus susceptibility. Nat. Commun. 11, 4566 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kim, J. H., Davis, W. G., Sambhara, S. & Jacob, J. Strategies to alleviate original antigenic sin responses to influenza viruses. Proc. Natl Acad. Sci. USA 109, 13751–13756 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wang, W. et al. Antigenic cartography using hamster sera identifies SARS-CoV-2 JN.1 evasion seen in human XBB.1.5 booster sera. Preprint at bioRxiv https://doi.org/10.1101/2024.04.05.588359 (2024).

Hobson, D., Curry, R. L., Beare, A. S. & Ward-Gardner, A. The role of serum haemagglutination-inhibiting antibody in protection against challenge infection with influenza A2 and B viruses. J. Hyg. 70, 767–777 (1972).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Feng, S. et al. Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. Nat. Med. 27, 2032–2040 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Ferdinands, J. M. et al. Waning of vaccine effectiveness against moderate and severe COVID-19 among adults in the US from the VISION network: test negative, case–control study. BMJ 379, e072141 (2022).

Article 
PubMed 

Google Scholar 

Chemaitelly, H. et al. Waning of BNT162b2 vaccine protection against SARS-CoV-2 infection in Qatar. N. Engl. J. Med. 385, e83 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Accorsi, E. K. et al. Association between 3 doses of mRNA COVID-19 vaccine and symptomatic infection caused by the SARS-CoV-2 Omicron and Delta variants. JAMA 327, 639–651 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Tseng, H. F. et al. Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta variants. Nat. Med. 28, 1063–1071 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Garcia-Beltran, W. F. et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell 185, 457–466 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Monge, S. et al. Effectiveness of mRNA vaccine boosters against infection with the SARS-CoV-2 Omicron (B.1.1.529) variant in Spain: a nationwide cohort study. Lancet Infect. Dis. 22, 1313–1320 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Yang, B. et al. Effectiveness of CoronaVac and BNT162b2 vaccines against severe acute respiratory syndrome coronavirus 2 Omicron BA.2 infections in Hong Kong. J. Infect. Dis. 226, 1382–1384 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Zhou, R. et al. Three-dose vaccination-induced immune responses protect against SARS-CoV-2 Omicron BA.2: a population-based study in Hong Kong. Lancet Reg. Health West. Pac. 32, 100660 (2023).

PubMed 

Google Scholar 

Lipsitch, M., Goldstein, E., Ray, G. T. & Fireman, B. Depletion-of-susceptibles bias in influenza vaccine waning studies: how to ensure robust results. Epidemiol. Infect. 147, e306 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kahn, R., Schrag, S. J., Verani, J. R. & Lipsitch, M. Identifying and alleviating bias due to differential depletion of susceptible people in postmarketing evaluations of COVID-19 vaccines. Am. J. Epidemiol. 191, 800–811 (2022).

Article 
PubMed 

Google Scholar 

Ray, G. T. et al. Depletion-of-susceptibles bias in analyses of intra-season waning of influenza vaccine effectiveness. Clin. Infect. Dis. 70, 1484–1486 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Skowronski, D. M. et al. A perfect storm: impact of genomic variation and serial vaccination on low influenza vaccine effectiveness during the 2014–2015 season. Clin. Infect. Dis. 63, 21–32 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Ohmit, S. E. et al. Influenza vaccine effectiveness in the community and the household. Clin. Infect. Dis. 56, 1363–1369 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Jones-Gray, E., Robinson, E. J., Kucharski, A. J., Fox, A. & Sullivan, S. G. Does repeated influenza vaccination attenuate effectiveness? A systematic review and meta-analysis. Lancet Respir. Med. 11, 27–44 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Ohmit, S. E. et al. Influenza vaccine effectiveness in the 2011–2012 season: protection against each circulating virus and the effect of prior vaccination on estimates. Clin. Infect. Dis. 58, 319–327 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar 

McLean, H. Q. et al. Impact of repeated vaccination on vaccine effectiveness against influenza A(H3N2) and B during 8 seasons. Clin. Infect. Dis. 59, 1375–1385 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Valenciano, M. et al. Vaccine effectiveness in preventing laboratory-confirmed influenza in primary care patients in a season of co-circulation of influenza A(H1N1)pdm09, B and drifted A(H3N2), I-MOVE Multicentre Case–Control Study, Europe 2014/15. Euro Surveill. 21, 30139 (2016).

Article 

Google Scholar 

Chemaitelly, H. et al. Long-term COVID-19 booster effectiveness by infection history and clinical vulnerability and immune imprinting: a retrospective population-based cohort study. Lancet Infect. Dis. 23, 816–827 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Shrestha, N. K. et al. Effectiveness of the coronavirus disease 2019 bivalent vaccine. Open Forum Infect. Dis. 10, ofad209 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Monge, S., Pastor-Barriuso, R. & Hernán, M. A. The imprinting effect of COVID-19 vaccines: an expected selection bias in observational studies. BMJ 381, e074404 (2023).

Google Scholar 

Hernán, M. A. & Monge, S. Selection bias due to conditioning on a collider. BMJ 381, 1135 (2023).

Article 
PubMed 

Google Scholar 

Hood, N. et al. Influenza vaccine effectiveness among children: 2011–2020. Pediatrics 151, e2022059922 (2023).

Article 
PubMed 

Google Scholar 

Shanks, G. D., Hussell, T. & Brundage, J. F. Epidemiological isolation causing variable mortality in island populations during the 1918–1920 influenza pandemic. Influenza Other Respir. Viruses 6, 417–423 (2012).

Article 

Google Scholar 

Flannery, B. et al. Influence of birth cohort on effectiveness of 2015–2016 influenza vaccine against medically attended illness due to 2009 pandemic influenza A(H1N1) virus in the United States. J. Infect. Dis. 218, 189–196 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Skowronski, D. M. et al. Beyond antigenic match: possible agent–host and immuno-epidemiological influences on influenza vaccine effectiveness during the 2015–2016 season in Canada. J. Infect. Dis. 216, 1487–1500 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Linderman, S. L. et al. Potential antigenic explanation for atypical H1N1 infections among middle-aged adults during the 2013–2014 influenza season. Proc. Natl Acad. Sci. USA 111, 15798–15803 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Huang, K.-Y. A. et al. Focused antibody response to influenza linked to antigenic drift. J. Clin. Invest. 125, 2631–2645 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar 

Kissling, E. et al. Low 2018/19 vaccine effectiveness against influenza A(H3N2) among 15–64-year-olds in Europe: exploration by birth cohort. Euro Surveill. 24, 1900604 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Skowronski, D. M. et al. Paradoxical clade- and age-specific vaccine effectiveness during the 2018/19 influenza A(H3N2) epidemic in Canada: potential imprint-regulated effect of vaccine (I-REV). Euro Surveill. 24, 1900585 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Tangye, S. G., Avery, D. T., Deenick, E. K. & Hodgkin, P. D. Intrinsic differences in the proliferation of naive and memory human B cells as a mechanism for enhanced secondary immune responses. J. Immunol. 170, 686–694 (2003).

Article 
CAS 
PubMed 

Google Scholar 

Hebeis, B. J. et al. Activation of virus-specific memory B cells in the absence of T cell help. J. Exp. Med. 199, 593–602 (2004).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Abbott, R. K. et al. Precursor frequency and affinity determine B cell competitive fitness in germinal centers, tested with germline-targeting HIV vaccine immunogens. Immunity 48, 133–146 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Tas, J. M. J. et al. Antibodies from primary humoral responses modulate recruitment of naive B cells during secondary responses. Immunity 55, 1856–1871 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Silva, M. et al. Targeted elimination of immunodominant B cells drives the germinal center reaction toward subdominant epitopes. Cell Rep. 21, 3672–3680 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Zhang, Y. et al. Germinal center B cells govern their own fate via antibody feedback. J. Exp. Med. 210, 457–464 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Cyster, J. G. & Wilson, P. C. Antibody modulation of B cell responses—incorporating positive and negative feedback. Immunity 57, 1466–1481 (2024).

Article 
CAS 
PubMed 

Google Scholar 

Viant, C. et al. Antibody affinity shapes the choice between memory and germinal center B cell fates. Cell 183, 1298–1311 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Gitlin, A. D., Shulman, Z. & Nussenzweig, M. C. Clonal selection in the germinal centre by regulated proliferation and hypermutation. Nature 509, 637–640 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Victora, G. D. et al. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143, 592–605 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Schwickert, T. A. et al. A dynamic T cell-limited checkpoint regulates affinity-dependent B cell entry into the germinal center. J. Exp. Med. 208, 1243–1252 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Toellner, K.-M., Sze, D. M.-Y. & Zhang, Y. What are the primary limitations in B-cell affinity maturation, and how much affinity maturation can we drive with vaccination? A role for antibody feedback. Cold Spring Harb. Perspect. Biol. 10, a028795 (2018).

Google Scholar 

Angeletti, D. et al. Outflanking immunodominance to target subdominant broadly neutralizing epitopes. Proc. Natl Acad. Sci. USA 116, 13474–13479 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Schaefer-Babajew, D. et al. Antibody feedback regulates immune memory after SARS-CoV-2 mRNA vaccination. Nature 613, 735–742 (2023).

Goodwin, E., Gibbs, J. S., Yewdell, J. W., Eisenlohr, L. C. & Hensley, S. E. Influenza virus antibodies inhibit antigen-specific de novo B cell responses in mice. Preprint at bioRxiv https://doi.org/10.1101/2024.04.12.589218 (2024).

Lanzavecchia, A. Receptor-mediated antigen uptake and its effect on antigen presentation to class II-restricted T lymphocytes. Annu. Rev. Immunol. 8, 773–793 (1990).

Article 
CAS 
PubMed 

Google Scholar 

Biavasco, R. & De Giovanni, M. The relative positioning of B and T cell epitopes drives immunodominance. Vaccines 10, 1227 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Li, F., Smith, P. & Ravetch, J. V. Inhibitory Fcγ receptor is required for the maintenance of tolerance through distinct mechanisms. J. Immunol. 192, 3021–3028 (2014).

Article 
CAS 
PubMed 

Google Scholar 

Smith, D. J., Forrest, S., Ackley, D. H. & Perelson, A. S. Variable efficacy of repeated annual influenza vaccination. Proc. Natl Acad. Sci. USA 96, 14001–14006 (1999).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Zarnitsyna, V. I., Lavine, J., Ellebedy, A., Ahmed, R. & Antia, R. Multi-epitope models explain how pre-existing antibodies affect the generation of broadly protective responses to influenza. PLoS Pathog. 12, e1005692 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Yisimayi, A. et al. Omicron-specific naive B cell maturation alleviates immune imprinting induced by SARS-CoV-2 inactivated vaccine. Preprint at bioRxiv https://doi.org/10.1101/2024.05.13.594034 (2024).

Schiepers, A., Van’t Wout, M. F. L., Hobbs, A., Mesin, L. & Victora, G. D. Opposing effects of pre-existing antibody and memory T cell help on the dynamics of recall germinal centers. Immunity 57, 1618–1628 (2024).

Article 
CAS 
PubMed 

Google Scholar 

Tseng, H. F. et al. mRNA-1273 bivalent (original and Omicron) COVID-19 vaccine effectiveness against COVID-19 outcomes in the United States. Nat. Commun. 14, 5851 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Lin, D.-Y. et al. Durability of XBB.1.5 vaccines against Omicron subvariants. N. Engl. J. Med. 390, 2124–2127 (2024).

Amitai, A. et al. Defining and manipulating B cell immunodominance hierarchies to elicit broadly neutralizing antibody responses against influenza virus. Cell Syst. 11, 573–588 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wang, S. Optimal sequential immunization can focus antibody responses against diversity loss and distraction. PLoS Comput. Biol. 13, e1005336 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Sprenger, K. G., Louveau, J. E., Murugan, P. M. & Chakraborty, A. K. Optimizing immunization protocols to elicit broadly neutralizing antibodies. Proc. Natl Acad. Sci. USA 117, 20077–20087 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Desikan, R. et al. Vaccine models predict rules for updating vaccines against evolving pathogens such as SARS-CoV-2 and influenza in the context of pre-existing immunity. Front. Immunol. 13, 985478 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleHow machine learning supports vaccine safety
Next Article Nonprofit leads Marburg vaccine development – ​​POLITICO
Paul E.
  • Website

Related Posts

Kentucky leaders emphasize whooping cough vaccination

October 31, 2024

Safety, efficacy and immunogenicity of aerosolized Ad5-nCoV COVID-19 vaccine in a non-inferiority randomized controlled trial

October 31, 2024

Trust is important, but increasing vaccination rates also requires three things

October 31, 2024
Leave A Reply Cancel Reply

Latest Posts

Health Canada approves Novartis’ KISQALI® for HR+/HER2- early breast cancer patients at high risk of recurrence

Sheriff, county lawyer seeking mental health funds at Minnesota State Capitol

Chronic absences have not disappeared. Research shows that poor children are most hurt.

Transport Secretary reveals overhaul of aging pneumatic transport systems

Latest Posts

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Welcome to Subjectional!

At Subjectional, we believe that informed opinions are the foundation of a vibrant society. Our mission is to provide insightful, engaging, and balanced information across a diverse range of topics that matter to you. Whether you’re interested in the latest developments in health, navigating the complexities of politics, staying updated on sports, exploring technological advancements, or advancing your career, we’ve got you covered.

Facebook X (Twitter) Instagram Pinterest YouTube

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Facebook X (Twitter) Instagram Pinterest
  • Home
  • About Us
  • Advertise with Us
  • Contact us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 subjectional. Designed by subjectional.

Type above and press Enter to search. Press Esc to cancel.