1. Hoebel, J. et al. Socioeconomic status and SARS-CoV-2 infection: seroepidemiological findings from a dynamic cohort across Germany. J Epidemiol Community Health 76, 350–353 https://doi.org/10.1136/jech-2021-217653 (2022).
2. Waldhauer, J. et al. Socioeconomic differences in the reduction of face-to-face contact during the first wave of the COVID-19 pandemic in Germany. BMC Public Health 22, 2419 https://doi.org/10.1186/s12889-022-14811-4 (2022).
3. McGowan, VJ & Bambra, C. Mortality and deprivation due to COVID-19: health disparities due to pandemics, epidemics and endemic diseases. Lancet Public Health 7, e966-e975 https://doi.org/10.1016/S2468-2667(22)00223-7 (2022).
4. Rohleder, S., Costa, D. & Bozorgmehr, PK Area-level socio-economic deprivation, non-national settlement, and Covid-19 incidence: A longitudinal spatiotemporal analysis in Germany. EClinicalMedicine 49, 101485 https://doi.org/10.1016/j.eclinm.2022.101485 (2022).
5. Vygen-Bonnet, S. et al. The New Coronavirus Infectious Disease Control Promotion Committee (STIKO) supports the New Coronavirus Infectious Disease Control Promotion Committee (STIKO). Epidbul 21, 3–63 https://doi.org/10.25646/7755.2 (2020).
6. Robert Koch Institute. COVID-19-Impfungen in Germany (COVID-19 Vaccination in Germany) (Dataset). Zenodo https://doi.org/10.5281/zenodo.7567636 (2021).
7. Meyer, B.F. et al. Germany’s fourth wave of coronavirus infections was mainly caused by unvaccinated people. Commun Med 2, 116 https://doi.org/10.1038/s43856-022-00176-7 (2022).
8. Bartig, S. et al. Social differences in COVID-19 vaccination status – Results from the GEDA 2021 study. J Health Monit 8, 2–22 https://doi.org/10.25646/11268 (2023).
9. Bartig, S. et al. Socioeconomic differences in SARS-CoV-2 infection and vaccination in Germany: a seroepidemiological study after a year of COVID-19 vaccination campaigns. Int J Public Health 68 https://doi.org/10.3389/ijph.2023.1606152 (2023).
10. Hubin, P. et al. Regional and individual-level analysis of demographic and socio-economic disparities in COVID-19 vaccination in Belgium. Vaccines: X 18, 100496 https://doi.org/https://doi.org/10.1016/j.jvacx.2024.100496 (2024).
11. Perry, M. et al. Inequalities in coverage of COVID-19 vaccination: A cross-sectional study based on population registers in Wales, UK. Vaccine 39, 6256–6261 https://doi.org/10.1016/j.vaccine.2021.09.019 (2021).
12. Nafilian, V. et al. Sociodemographic inequalities in COVID-19 vaccination uptake among older people in the UK: a national linked data survey. BMJ Open 11, e053402 https://doi.org/10.1136/bmjopen-2021-053402 (2021).
13. Clouston, SAP, Hanes, DW & Link, BG Social inequalities and early provision and distribution of COVID-19 vaccination in the United States: A population trends study. Vaccine 41, 5322–5329 https://doi.org/10.1016/j.vaccine.2023.07.022 (2023).
14. Mercuri, E. et al. National population-based infectious disease and vaccine-induced SARS-CoV-2 seroprevalence in Germany in autumn/winter 2021/2022 (approved). Euro Monitor (2024).
15. Endrich, MM, Blank, PR & Szucs, TD Influenza vaccination uptake and socio-economic determinants in 11 European countries. Vaccine 27, 4018–4024 https://doi.org/10.1016/j.vaccine.2009.04.029 (2009).
16. Poesko-Müller, C. & Schmitz, R. Impfstatus von Erwachsenen, Germany. Bundesgesundheitsbl 56, 845–857 https://doi.org/10.1007/s00103-013-1693-6 (2013).
17. Brodzinski, A. et al. Hepatitis B virus infection and vaccine-induced immunity: the role of sociodemographic determinants. Results of the study “German Health Interview and Examination Survey for Adults” (DEGS1, 2008-2011). Bundesgesundheitsbl 65, 159–169 https://doi.org/10.1007/s00103-021-03473-z (2022).
18. Rydland, HT, Friedman, J., Stringhini, S., Link, BG & Eikemo, TA Radically unequal distribution of coronavirus vaccinations: predictable but avoidable root causes of inequality. symptoms. Humanit. And socks. Common to science. 9, 61 https://doi.org/10.1057/s41599-022-01073-z (2022).
19. Link, BG & Phelan, J. Social conditions as the root cause of disease. J Health Soc Behav, 80–94 https://doi.org/10.2307/2626958 (1995).
20. Clouston, SAP & Link, BG A retrospective of root cause theory: Current state of the literature and future goals. Annu Rev Sociol 47, 131–156 https://doi.org/10.1146/annurev-soc-090320-094912 (2021).
21. Rogers, EM Diffusion of Innovations. 4 edn, (Free Press, 1995).
22. Zapatamoya, Á. R., Willems, B. & Bracke, P. (Re)reproduction of health inequalities through the diffusion process of prevention innovations: the dynamic influence of socio-economic status. Health Sociol Rev 28, 177–193 https://doi.org/10.1080/14461242.2019.1601027 (2019).
23. Steffen, A., Rieck, T., Fischer, C. & Siedler, A. Inanspruchnahme der COVID-19-Impfung – Eine Sonderauswertung mit Daten bis Dezember 2021. Epid Bull, 3–12 https://doi.org /10.25646/10227 (2022).
24. Zelenina, A., Shalnova, S., Maksimov, S., Drapkina, O. Classification of deprivation indicators applied to the detection of health inequalities: a scoping review. Int J Environ Res Public Health 19, 10063 https://doi.org/10.3390/ijerph191610063 (2022).
25. Townsend, P. Deprivation. J Soc Policy 16, 125–146 https://doi.org/10.1017/S0047279400020341 (1987).
26. Townsend, P., Fillimore, P., Beattie, A. Health and deprivation: Inequality and the North. (Routledge, 1988).
27. Bartig, S. et al. National Corona Monitoring (RKI-SOEP-2): Seroepidemiological study of the spread of SARS-CoV-2 throughout Germany. Jahrb Natl Okon Stat, 1–19 https://doi.org/doi:10.1515/jbnst-2022-0047 (2022).
28. Arpol. Standard definition: Incident code final disposition and investigation outcome rate. (American Association for Public Opinion Research (AAPOR), Deerfield, 2016).
29. Michalski, N. et al. German Socio-Economic Deprivation Index (GISD): Revised, updated and applications. J Health Monit 7, 23 https://doi.org/10.25646/10641 (2022).
30. Michalski, N., Reis, M., Tetzlaff, F., Nowossadeck, E. & Hoebel, J. German Socio-Economic Deprivation Index (GISD) (2022-12-02) (Dataset). https://doi.org/10.5281/zenodo.6840304 (2022).
31. Allison, PD event history and survival analysis. 2nd edition, (SAGE Publications, 2014).
32. Kleves, MA, WW Gould, RG Gutierrez Overview of survival analysis using Stata. Revised edition, (Stata Press, 2004).
33. Laubereau, B., Hermann, M., Schmitt, HJ, Weil, J. & Von Kries, R. Detecting delays in vaccination: a new approach to visualizing vaccine uptake. Epidemiology and Infectious Diseases 128, 185–192 https://doi.org/10.1017/S0950268801006550 (2002).
34. Rabe-Hesketh, S. and Skrondal, A., Multilevel and Logitudinal Modeling with Stata. Volume II: Categorical Responses, Counting, and Survival 499563 (Stata Press, 2012).
35. Holm, S. A simple sequential rejection multiple testing procedure. Scandinavian Journal of Statistics 6, 65–70 (1979).
36. Stata Statistical Software: Release 17 (StataCorp LLC, College Station, TX, 2021).
37. Lazarus, J.V. et al. Global survey on acceptability of COVID-19 vaccines. Nat Med 27, 225–228 https://doi.org/10.1038/s41591-020-1124-9 (2020).
38. Graeber, D., Schmidt-Petri, C. & Schröder, C. Attitudes regarding voluntary and compulsory vaccination against COVID-19: Evidence from Germany. PLoS One 16, e0248372 https://doi.org/10.1371/journal.pone.0248372 (2021).
39. Steinert, J.I. et al. Coronavirus disease (COVID-19) vaccine hesitancy in eight European countries: uptake, determinants, and heterogeneity. Sci Adv 8, eabm9825 https://doi.org/doi:10.1126/sciadv.abm9825 (2022).
40. Dolby, T. et al. Monitoring socio-demographic inequalities in COVID-19 vaccination in the UK: a national linked data study. J Epidemiol Community Health 76, 646–652 https://doi.org/10.1136/jech-2021-218415 (2022).
41. Meyer, B.F. et al. Estimated distribution of coronavirus susceptibility, recovery and vaccination in Germany until April 2022. medRxiv, 2022.2004.2019.22274030 https://doi.org/10.1101/2022.04.19.22274030 (2022).
42.IWH. United Nation – 30 years after the fall of the Wall. (2019).
43. Pickel, S. & Pickel, G. The wall of the mind – revisiting the stable differences in the political culture of West and East Germany. German Politics 32, 20–42 https://doi.org/10.1080/09644008.2022.2072488 (2023).
44. Götz, G., Herold, D., Klotz, P.-A. & Schäfer, J.T. Efficiency of the coronavirus vaccination campaign—a comparison between German federal states. Vaccines 9, 788 (2021).
45. Betsch, C. et al. Beyond confidence: Development of a scale to assess the 5 C psychological antecedents of vaccination. PLoS One 13, e020860 https://doi.org/10.1371/journal.pone.0208601 (2018).
46. Allington, D., McAndrew, S., Moxham-Hall, V. & Duffy, B. COVID-19 conspiracy allegations, general vaccine attitudes, trust and coronavirus information sources influence COVID-19 Predictors of vaccine hesitancy among UK residents during the pandemic. Annu Rev Psychol 53, 236–247 https://doi.org/10.1017/S0033291721001434 (2023).
47. Islam, MS et al. COVID-19-related infodemic and public health impact: A global social media analysis. Am J Trop Med Hyg 103, 1621–1629 https://doi.org/10.4269/ajtmh.20-0812 (2020).
48. Allington, D., Duffy, B., Wessely, S., Dhavan, N. & Rubin, J. Health-protective behaviors, social media use, and conspiracies during the COVID-19 public health emergency. Theory. Annu Rev Psychol 51, 1763–1769 https://doi.org/10.1017/S003329172000224X (2021).
49. Puri, N., Coomes, EA, Haghbayan, H. & Gunaratne, K. Social media and vaccine hesitancy: A new update in the era of COVID-19 and global infectious diseases. Hum Vaccin Immunother 16, 2586–2593 https://doi.org/10.1080/21645515.2020.1780846 (2020).
50. Salimi, A., Elhawary, H., Diab, N., and Smith, L. North American layperson understanding of COVID-19: Are we doing enough? Frontiers in Public Health 8, 358 https://doi.org/10.3389/fpubh.2020.00358 (2020).
51. Pförtner, T.-K., Dohle, S. & Hower, KI Trends in educational disparities in preventive behavior, risk perception, efficacy perception, and trust during the first year of the COVID-19 pandemic in Germany. BMC Public Health 22, 903 https://doi.org/10.1186/s12889-022-13341-3 (2022).
52. Rattei, P. et al. Differences in risk perception, knowledge, and protective behavior regarding COVID-19 infection by educational level of women and men in Germany. Results from the COVID-19 Snapshot Monitoring (COSMO) study. PLoS One 16, e0251694 https://doi.org/10.1371/journal.pone.0251694 (2021).
53. Rabb, N., Bowers, J., Glick, D., Wilson, KH & Yokum, D. The influence of social norms varies by “other” group: the impact of COVID-19 vaccination intentions. evidence. Proc Natl Acad Sci USA 119, e2118770119 https://doi.org/doi:10.1073/pnas.2118770119 (2022).
54. Mehring, A. et al. Providing normative information increases willingness to accept the COVID-19 vaccine. Nat Commun 14, 126 https://doi.org/10.1038/s41467-022-35052-4 (2023).
55. Konstantinou, P. et al. Attitudes toward vaccination and vaccination communication based on social contagion theory: A scoping review. Vaccines 9, 607 https://doi.org/10.3390/vaccines9060607 (2021).
56. Robert, SA Socioeconomic status and health: The independent contribution of community socio-economic context. Annual Review of Sociology 25, 489–516 https://doi.org/doi.org/10.1146/annurev.soc.25.1.489 (1999).
57. Doerken, S., Avalos, M., Lagarde, E. & Schumacher, M. Penalized logistic regression with low prevalence exposures across high-dimensional settings. PLoS One 14, e0217057 https://doi.org/10.1371/journal.pone.0217057 (2019).
58. Malesza, M. & Wittmann, E. Acceptance and uptake of the COVID-19 vaccine among older adults in Germany. J Clin Med 10, 1388 https://doi.org/10.3390/jcm10071388 (2021).
59. Arnesen, S., Bærøe, K., Cappelen, C. & Carlsen, B. Can information about herd immunity help us achieve herd immunity? Evidence from population-representative research experiments. Scand J Public Health 46, 854–858 https://doi.org/10.1177/1403494818770298 (2018).