Close Menu
  • Home
  • Vaccines
  • Politics
  • Health
  • Tech
  • Sports
  • Research
  • Fitness
  • Careers
What's Hot

Health Canada approves Novartis’ KISQALI® for HR+/HER2- early breast cancer patients at high risk of recurrence

Sheriff, county lawyer seeking mental health funds at Minnesota State Capitol

Chronic absences have not disappeared. Research shows that poor children are most hurt.

Facebook X (Twitter) Instagram
subjectional.com
Subscribe
  • Home
  • Vaccines
  • Politics
  • Health
  • Tech
  • Sports
  • Research
  • Fitness
  • Careers
subjectional.com
Home » A novel outer membrane vesicle adjuvant improves vaccine protection against Bordetella pertussis
Vaccines

A novel outer membrane vesicle adjuvant improves vaccine protection against Bordetella pertussis

Paul E.By Paul E.October 16, 2024No Comments11 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Ryan, M. et al. Distinct T-cell subtypes induced with whole cell and acellular pertussis vaccines in children. Immunology 93, 1 (1998).

Article 

Google Scholar 

Warfel, J. M., Zimmerman, L. I. & Merkel, T. J. Comparison of three whole-cell pertussis vaccines in the baboon model of pertussis. Clin. Vacc. Immunol. 23, 47–54 (2016).

Article 

Google Scholar 

Wilk, M. M. et al. Immunization with whole cell but not acellular pertussis vaccines primes CD4 TRM cells that sustain protective immunity against nasal colonization with Bordetella pertussis. Emerg. Microbes Infect. 8, 169–185 (2019).

Article 

Google Scholar 

Mills, K. H. G., Barnard, A., Watkins, J. & Redhead, K. Cell-mediated immunity to Bordetella pertussis: role of Th1 cells in bacterial clearance in a murine respiratory infection model. Infect. Immun. 61, 399–410 (1993).

Article 

Google Scholar 

Warfel, J. M. & Merkel, T. J. Bordetella pertussis infection induces a mucosal IL-17 response and long-lived Th17 and Th1 immune memory cells in nonhuman primates. Mucosal Immunol. 6, 787–796 (2013).

Article 

Google Scholar 

Rowe, J. et al. Antigen-specific responses to diphtheria-tetanus-acellular pertussis vaccine in human infants are initially Th2 polarized. Infect. Immun. 68, 3873–3877 (2000).

Article 

Google Scholar 

Rowe, J. et al. Th2-associated local reactions to the acellular diphtheria-tetanus-pertussis vaccine in 4- to 6-year-old children. Infect. Immun. 73, 8130–8135 (2005).

Article 

Google Scholar 

White, O. J. et al. Th2-polarisation of cellular immune memory to neonatal pertussis vaccination. Vaccine 28, 2648–2652 (2010).

Article 

Google Scholar 

Dubois, V. et al. Suppression of mucosal Th17 memory responses by acellular pertussis vaccines enhances nasal Bordetella pertussis carriage. NPJ Vacc. 6, 6 (2021).

Article 

Google Scholar 

Kolls, J. K. & Khader, S. A. The role of Th17 cytokines in primary mucosal immunity. Cytokine Growth Factor Rev. 21, 443–448 (2010).

Article 

Google Scholar 

Borkner, L., Curham, L. M., Wilk, M. M., Moran, B. & Mills, K. H. G. IL-17 mediates protective immunity against nasal infection with Bordetella pertussis by mobilizing neutrophils, especially Siglec-F+ neutrophils. Mucosal Immunol. 14, 1183 (2021).

Article 

Google Scholar 

Gorringe, A. R. et al. Phase I safety and immunogenicity study of a candidate meningococcal disease vaccine based on Neisseria lactamica outer membrane vesicles. Clin. Vaccin. Immunol. 16, 1113–1120 (2009).

Article 

Google Scholar 

Nieves, W. et al. A naturally derived outer-membrane vesicle vaccine protects against lethal pulmonary Burkholderia pseudomallei infection. Vaccine 29, 8381–8389 (2011).

Article 

Google Scholar 

Baker, S. M. et al. A Burkholderia pseudomallei Outer Membrane Vesicle Vaccine Provides Cross Protection against Inhalational Glanders in Mice and Non-Human Primates. Vaccines (Basel) 5, 49 (2017).

Article 

Google Scholar 

Byvalov, A. A., Konyshev, I. V., Uversky, V. N., Dentovskaya, S. V. & Anisimov, A. P. Yersinia Outer Membrane Vesicles as Potential Vaccine Candidates in Protecting against Plague. Biomolecules 10, 1–23 (2020).

Article 

Google Scholar 

Wang, X. et al. Remodeling Yersinia pseudotuberculosis to generate a highly immunogenic outer membrane vesicle vaccine against pneumonic plague. Proc. Natl. Acad. Sci. USA 119, 11 (2022).

Google Scholar 

Bottero, D. et al. Characterization of the immune response induced by pertussis OMVs-based vaccine. Vaccine 34, 3303–3309 (2016).

Article 

Google Scholar 

Carriquiriborde, F. et al. Pertussis Vaccine Candidate Based on Outer Membrane Vesicles Derived From Biofilm Culture. Front. Immunol. 12, 1 (2021).

Article 

Google Scholar 

Raeven, R. H. M. et al. The Role of Virulence Proteins in Protection Conferred by Bordetella pertussis Outer Membrane Vesicle Vaccines. Vaccines (Basel) 8, 1–22 (2020).

Google Scholar 

Elizagaray, M. L. et al. Canonical and Non-canonical Inflammasome Activation by Outer Membrane Vesicles Derived From Bordetella pertussis. Front. Immunol. 11, 1879 (2020).

Article 

Google Scholar 

Rami, A. et al. Outer Membrane Vesicles of Bordetella pertussis Encapsulated into Sodium Alginate Nanoparticles as Novel Vaccine Delivery System. Curr. Pharm. Des. 27, 4341–4354 (2021).

Article 

Google Scholar 

Zurita, M. E. et al. A Pertussis Outer Membrane Vesicle-Based Vaccine Induces Lung-Resident Memory CD4 T Cells and Protection against Bordetella pertussis, including Pertactin Deficient Strains. Front Cell Infect. Microbiol. 9, 125 (2019).

Article 

Google Scholar 

Asensio, C. J. A. et al. Outer membrane vesicles obtained from Bordetella pertussis Tohama expressing the lipid A deacylase PagL as a novel acellular vaccine candidate. Vaccine 29, 1649–1656 (2011).

Article 

Google Scholar 

Roberts, R. et al. Outer membrane vesicles as acellular vaccine against pertussis. Vaccine 26, 4639–4646 (2008).

Article 

Google Scholar 

Yılmaz Çolak, Ç. & Tefon Öztürk, B. E. Bordetella pertussis and outer membrane vesicles. Pathog. Glob. Health 117, 342–355 (2023).

Article 

Google Scholar 

Petersen, H., Nieves, W., Russell-Lodrigue, K., Roy, C. J. & Morici, L. A. Evaluation of a Burkholderia Pseudomallei Outer Membrane Vesicle Vaccine in Nonhuman Primates. Procedia Vaccinol. 8, 38–42 (2014).

Article 

Google Scholar 

Timothy et al. Bacterial-Derived Outer Membrane Vesicles are Potent Adjuvants that Drive Humoral and Cellular Immune Responses. Pharmaceutics 13, 1–11 (2021).

Google Scholar 

Baker, S. M. et al. Burkholderia pseudomallei OMVs derived from infection mimicking conditions elicit similar protection to a live-attenuated vaccine. NPJ Vaccines 6, 1–10 (2021).

Article 

Google Scholar 

Harrell, J. E. et al. An Outer Membrane Vesicle-Adjuvanted Oral Vaccine Protects Against Lethal, Oral Salmonella Infection. Pathogens 10, 626 (2021).

Article 

Google Scholar 

Gestal, M. C., Howard, L. K., Dewan, K. K. & Harvill, E. T. Bbvac: A Live Vaccine Candidate That Provides Long-Lasting Anamnestic and Th17-Mediated Immunity against the Three Classical Bordetella spp. mSphere 7, 1 (2022).

Article 

Google Scholar 

Warfel, J. M., Zimmerman, L. I. & Merkel, T. J. Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proc. Natl Acad. Sci. 111, 787–792 (2014).

Article 

Google Scholar 

Steed, L. L., Akporiaye, E. T. & Friedman, R. L. Bordetella pertussis induces respiratory burst activity in human polymorphonuclear leukocytes. Infect. Immun. 60, 2101–2105 (1992).

Article 

Google Scholar 

Barbic, J., Leef, M. F., Burns, D. L. & Shahin, R. D. Role of gamma interferon in natural clearance of Bordetella pertussis infection. Infect. Immun. 65, 4904–4908 (1997).

Article 

Google Scholar 

Hellwig, S. M. M., Van Spriel, A. B., Schellekens, J. F. P., Mooi, F. R. & Van de Winkel, J. G. J. Immunoglobulin A-mediated protection against Bordetella pertussis infection. Infect. Immun. 69, 4846–4850 (2001).

Article 

Google Scholar 

Higgs, R., Higgins, S. C., Ross, P. J. & Mills, K. H. G. Immunity to the respiratory pathogen Bordetella pertussis. Mucosal Immunol. 5, 485–500 (2012).

Article 

Google Scholar 

Ross, P. J. et al. Relative Contribution of Th1 and Th17 Cells in Adaptive Immunity to Bordetella pertussis: Towards the Rational Design of an Improved Acellular Pertussis Vaccine. PLoS Pathog. 9, e1003264 (2013).

Article 

Google Scholar 

Redhead, K., Watkins, J., Barnard, A. & Mills, K. H. G. Effective immunization against Bordetella pertussis respiratory infection in mice is dependent on induction of cell-mediated immunity. Infect. Immun. 61, 3190 (1993).

Article 

Google Scholar 

Chasaide, C. N. & Mills, K. H. G. Next-Generation Pertussis Vaccines Based on the Induction of Protective T Cells in the Respiratory Tract. Vaccines (Basel) 8, 1–28 (2020).

Google Scholar 

Anderson, K. G. et al. Intravascular staining for discrimination of vascular and tissue leukocytes. Nat. Protoc. 2013 9:1 9, 209–222 (2014).

Google Scholar 

Zhang, Y. et al. Determination of serum neutralizing antibodies reveals important difference in quality of antibodies against pertussis toxin in children after infection. Vaccine 39, 1826–1830 (2021).

Article 

Google Scholar 

Acquaye-Seedah, E. et al. Characterization of individual human antibodies that bind pertussis toxin stimulated by acellular immunization. Infect. Immun. 86 (2018).

Nguyen, A. W. et al. Neutralization of pertussis toxin by a single antibody prevents clinical pertussis in neonatal baboons. Sci. Adv. 6 (2020).

Hewlett, E. L. & Halperin, S. A. Serological correlates of immunity to Bordetella pertussis: Editorial. Vaccine 16, 1899–1900 (1998).

Article 

Google Scholar 

Storsaeter, J., Hallander, H. O., Gustafsson, L. & Olin, P. Levels of anti-pertussis antibodies related to protection after household exposure to Bordetella pertussis. Vaccine 16, 1907–1916 (1998).

Article 

Google Scholar 

Madhavan, M. et al. Tolerability and immunogenicity of an intranasally-administered adenovirus-vectored COVID-19 vaccine: An open-label partially-randomised ascending dose phase I trial. EBioMed. 85, 104298 (2022).

Article 

Google Scholar 

WHO. DTaP Immunization Coverage Database. Immunization Data Portal https://immunizationdata.who.int/ (2022).

WHO. Pertussis reported cases and incidence. https://immunizationdata.who.int/pages/incidence/pertussis.html (2022).

Klein, N. P., Bartlett, J., Rowhani-Rahbar, A., Fireman, B. & Baxter, R. Waning Protection after Fifth Dose of Acellular Pertussis Vaccine in Children. N. Engl. J. Med. 367, 1012–1019 (2012).

Article 

Google Scholar 

De Cellès, M. D., Magpantay, F. M. G., King, A. A. & Rohani, P. The impact of past vaccination coverage and immunity on pertussis resurgence. Sci. Transl. Med. 10 (2018).

Zerbo, O. et al. Acellular Pertussis Vaccine Effectiveness Over Time. Pediatrics 144 (2019).

Damron, F. H. et al. Overcoming Waning Immunity in Pertussis Vaccines: Workshop of the National Institute of Allergy and Infectious Diseases. J. Immunol. 205, 877 (2020).

Article 

Google Scholar 

Craig, R. et al. Asymptomatic Infection and Transmission of Pertussis in Households: A Systematic Review. Clin. Infect. Dis. 70, 152–161 (2020).

Article 

Google Scholar 

Allen, A. C. et al. Sustained protective immunity against Bordetella pertussis nasal colonization by intranasal immunization with a vaccine-adjuvant combination that induces IL-17-secreting TRM cells. Mucosal Immunol. 11, 1763–1776 (2018).

Article 

Google Scholar 

Solans, L. et al. IL-17-dependent SIgA-mediated protection against nasal Bordetella pertussis infection by live attenuated BPZE1 vaccine. https://doi.org/10.1038/s41385-018-0073-9 (2018).

Ryan, M. et al. Bordetella pertussis respiratory infection in children is associated with preferential activation of type 1 T helper cells. J. Infect. Dis. 175, 1246–1250 (1997).

Article 

Google Scholar 

Mcguirk, P. & Mills, K. H. G. A Regulatory Role for Interleukin 4 in Differential Inflammatory Responses in the Lung following Infection of Mice Primed with Th1- or Th2-Inducing Pertussis Vaccines. Infect. Immun. 68, 1383 (2000).

Article 

Google Scholar 

Lavelle, E. C. & Ward, R. W. Mucosal vaccines – fortifying the frontiers. Nat. Rev. Immunol. 22, 236–250 (2022).

Article 

Google Scholar 

Jennings-Gee, J. et al. The Adjuvant Bordetella Colonization Factor A Attenuates Alum-Induced Th2 Responses and Enhances Bordetella pertussis Clearance from Mouse Lungs. Infect. Immun. 86 (2018).

Yount, K. S. et al. Systemic priming and intranasal booster with a BcfA-adjuvanted acellular pertussis vaccine generates CD4+ IL-17+ nasal tissue resident T cells and reduces B. pertussis nasal colonization. Front. Immunol. 14, 1181876 (2023).

Article 

Google Scholar 

Pschunder, B. et al. Outer membrane vesicles derived from Bordetella pertussis are potent adjuvant that drive Th1-biased response. Front. Immunol. 15, 1387534 (2024).

Article 

Google Scholar 

Mancini, F. et al. GMMA-Based Vaccines: The Known and The Unknown. Front. Immunol. 12, 715393 (2021).

Article 

Google Scholar 

Rossi, O., Citiulo, F. & Mancini, F. Outer membrane vesicles: moving within the intricate labyrinth of assays that can predict risks of reactogenicity in humans. Hum. Vaccin Immunother. 17, 1–13 (2021).

Article 

Google Scholar 

Cheng, K. et al. Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via Plug-and-Display technology. Nat. Commun. 12, 2041 (2021).

Article 

Google Scholar 

Gaillard, M. E. et al. Acellular pertussis vaccine based on outer membrane vesicles capable of conferring both long-lasting immunity and protection against different strain genotypes. Vaccine 32, 931–937 (2014).

Article 

Google Scholar 

Raeven, R. H. M. et al. Intranasal immunization with outer membrane vesicle pertussis vaccine confers broad protection through mucosal IgA and Th17 responses. Sci. Rep. 10, 7396 (2020).

Article 

Google Scholar 

Sidey, F. M., Furman, B. L. & Wardław, A. C. Effect of hyperreactivity to endotoxin on the toxicity of pertussis vaccine and pertussis toxin in mice. Vaccine 7, 237–241 (1989).

Article 

Google Scholar 

Loscher, C. E., Donnelly, S., McBennett, S., Lynch, M. A. & Mills, K. H. G. Proinflammatory Cytokines in the Adverse Systemic and Neurologic Effects Associated with Parenteral Injection of a Whole Cell Pertussis Vaccine. Ann. N. Y Acad. Sci. 856, 274–277 (1998).

Article 

Google Scholar 

Armstrong, M. E., Loscher, C. E., Lynch, M. A. & Mills, K. H. G. IL-1β-dependent neurological effects of the whole cell pertussis vaccine: a role for IL-1-associated signalling components in vaccine reactogenicity. J. Neuroimmunol. 136, 25–33 (2003).

Article 

Google Scholar 

Geurtsen, J. et al. Consequences of the expression of lipopolysaccharide-modifying enzymes for the efficacy and reactogenicity of whole-cell pertussis vaccines. Microbes Infect. 9, 1096–1103 (2007).

Article 

Google Scholar 

Kumar, P. et al. Intestinal interleukin-17 receptor signaling mediates reciprocal control of the gut microbiota and autoimmune inflammation. Immunity 44, 659 (2016).

Article 

Google Scholar 

Propst, K. L., Mima, T., Choi, K. H., Dow, S. W. & Schweizer, H. P. A Burkholderia pseudomallei delta purM mutant is avirulent in immunocompetent and immunodeficient animals: candidate strain for exclusion from select-agent lists. Infect. Immun. 78, 3136–3143 (2010).

Article 

Google Scholar 

Miura, K. et al. ELISA units, IgG subclass ratio and avidity determined functional activity of mouse anti-Pfs230 antibodies judged by a standard membrane-feeding assay with Plasmodium falciparum. Vaccine 37, 2073 (2019).

Article 

Google Scholar 



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticlePeople’s Health is committed to breast cancer education and awareness
Next Article CHOP and Vanderbilt researchers lead $7.37 million kidney stone research project
Paul E.
  • Website

Related Posts

Kentucky leaders emphasize whooping cough vaccination

October 31, 2024

Safety, efficacy and immunogenicity of aerosolized Ad5-nCoV COVID-19 vaccine in a non-inferiority randomized controlled trial

October 31, 2024

Trust is important, but increasing vaccination rates also requires three things

October 31, 2024
Leave A Reply Cancel Reply

Latest Posts

Health Canada approves Novartis’ KISQALI® for HR+/HER2- early breast cancer patients at high risk of recurrence

Sheriff, county lawyer seeking mental health funds at Minnesota State Capitol

Chronic absences have not disappeared. Research shows that poor children are most hurt.

Transport Secretary reveals overhaul of aging pneumatic transport systems

Latest Posts

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Welcome to Subjectional!

At Subjectional, we believe that informed opinions are the foundation of a vibrant society. Our mission is to provide insightful, engaging, and balanced information across a diverse range of topics that matter to you. Whether you’re interested in the latest developments in health, navigating the complexities of politics, staying updated on sports, exploring technological advancements, or advancing your career, we’ve got you covered.

Facebook X (Twitter) Instagram Pinterest YouTube

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Facebook X (Twitter) Instagram Pinterest
  • Home
  • About Us
  • Advertise with Us
  • Contact us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 subjectional. Designed by subjectional.

Type above and press Enter to search. Press Esc to cancel.