Ley, D. H. Diseases of Poultry, 12th ed. in Diseases of Poultry (eds. Saif, Y. et al.) 807–834 (Blackwell Publishing Press, Ames, IA, 2008).
Carpenter, T. E., Mallinson, E. T., Miller, K. F., Gentry, R. F. & Schwartz, L. D. Vaccination with F-strain Mycoplasma gallisepticum to reduce production losses in layer chickens. Avian Dis. 25, 404–409 (1981).
Google Scholar
Johnson, D. C., Emory, W. H., Kleven, S. H. & Stallknecht, D. E. A Mycoplasma gallisepticum epornitic in turkeys: its epidemiology and eradication. Avian Dis. 25, 1047–1052 (1981).
Google Scholar
Mohammed, H. O., Carpenter, T. E. & Yamamoto, R. Evaluation of factors associated with infection of commercial layers with Mycoplasma gallisepticum and M. synoviae. Avian Dis. 31, 470–476 (1987).
Google Scholar
Mohammed, H. O., Carpenter, T. E. & Yamamoto, R. Economic impact of Mycoplasma gallisepticum and M. synoviae in commercial layer flocks. Avian Dis. 31, 477–482 (1987).
Google Scholar
Stipkovits, L. & Kempf, I. Mycoplasmoses in poultry. Rev. Sci. Tech. Int. Epizoot. 15, 1495–1525 (1996).
Google Scholar
USDA. National Poultry Improvement Plan Program Standards. (2019).
Yoder, H. W. Avian Mycoplasmas. in Diagnostic Procedure in Veterinary Bacteriology and Mycology 333–341 https://doi.org/10.1016/B978-0-12-161775-2.50030-X (Elsevier, 1990).
Ferguson-Noel, N. M. & Williams, S. M. The efficacy of Mycoplasma gallisepticum K-strain live vaccine in broiler and layer chickens. Avian Pathol. 44, 75–80 (2015).
Google Scholar
Whithear, K. G., Soeripto, Harringan, K. E. & Ghiocas, E. Safety of temperature sensitive mutant Mycoplasma gallisepticum vaccine. Aust. Vet. J. 67, 159–165 (1990).
Google Scholar
Kanci Condello, A. et al. Mycoplasma gallisepticum strain ts-304 is a safe and effective live attenuated vaccine for use in chickens. Vet. Microbiol. 244, 108654 (2020).
Google Scholar
Evans, R. D. & Hafez, Y. S. Evaluation of a Mycoplasma gallisepticum strain exhibiting reduced virulence for prevention and control of poultry mycoplasmosis. Avian Dis. 36, 197–201 (1992).
Google Scholar
Burnham, M. R., Branton, S. L., Peebles, E. D., Lott, B. D. & Gerard, P. D. Effects of F-strain Mycoplasma gallisepticum inoculation at twelve weeks of age on performance and egg characteristics of commercial egg-laying hens. Poult. Sci. 81, 1478–1485 (2002).
Google Scholar
Lin, M. Y. & Kleven, S. H. Cross-immunity and antigenic relationships among five strains of Mycoplasma gallisepticum in young Leghorn chickens. Avian Dis. 26, 496–507 (1982).
Google Scholar
Lin, M. Y. & Kleven, S. H. Correlation of titer, preservation method, and storage of Mycoplasma gallisepticum F strain and the immune response in chickens. Avian Dis. 28, 273–277 (1984).
Google Scholar
Ricketts, C. et al. Identification of strain-specific sequences that distinguish a mycoplasma gallisepticum vaccine strain from field isolates. J. Clin. Microbiol. 55, 244–252 (2017).
Google Scholar
Talkington, F. D. & Kleven, S. H. Evaluation of protection against colonization of the chicken trachea following administration of Mycoplasma gallisepticum bacterin. Avian Dis. 29, 998–1003 (1985).
Google Scholar
Abdelwhab, E. M. et al. Detection and molecular characterization of Mycoplasma gallisepticum field infection in TS-11-vaccinated broiler breeders. J. Appl. Poult. Res. 20, 390–396 (2011).
Google Scholar
Bwala, D. G., Solomon, P., Duncan, N., Wandrag, D. B. R. & Abolnik, C. Assessment of Mycoplasma gallisepticum vaccine efficacy in a co-infection challenge model with QX-like infectious bronchitis virus. Avian Pathol. 47, 261–270 (2018).
Google Scholar
Ley, D. H. et al. Transmissibility of live Mycoplasma gallisepticum vaccine strains ts-11 and 6/85 from vaccinated layer pullets to sentinel poultry. Avian Dis. 41, 187–194 (1997).
Google Scholar
Steinlage, S. J. T. et al. Isolation and characterization of a 6/85-like mycoplasma gallisepticum from commercial laying hens. Avian Dis. 47, 499–505 (2003).
Google Scholar
El Gazzar, M., Laibinis, V. A. & Ferguson-Noel, N. Characterization of a ts-11–like Mycoplasma gallisepticum isolate from commercial broiler chickens. Avian Dis. 55, 569–574 (2011).
Google Scholar
Armour, N. K. & Ferguson-Noel, N. Evaluation of the egg transmission and pathogenicity of Mycoplasma gallisepticum isolates genotyped as ts-11. Avian Pathol. 44, 296–304 (2015).
Google Scholar
Leigh, S. A. & Evans, J. D. Genetic comparison of the Mycoplasma gallisepticum 6/85 vaccine strain and 6/85-like field isolates. Vet. Microbiol. 291, 110008 (2024).
Google Scholar
Papazisi, L. et al. GapA and CrmA coexpression is essential for Mycoplasma gallisepticum cytadherence and virulence. Infect. Immun. 70, 6839–6845 (2002).
Google Scholar
Indiková, I. et al. Role of the GapA and CrmA Cytadhesins of Mycoplasma gallisepticum in promoting virulence and host colonization. Infect. Immun. 81, 1618–1624 (2013).
Google Scholar
Goh, M. S., Gorton, T. S., Forsyth, M. H., Troy, K. E. & Geary, S. J. Molecular and biochemical analysis of a 105 kDa Mycoplasma gallisepticum cytadhesin(GapA). Microbiology 144, 2971–2978 (1998).
Google Scholar
Noormohammadi, A. H., Markham, P. F., Duffy, M. F., Whithear, K. G. & Browning, G. F. Multigene families encoding the major Hemagglutinins in phylogenetically distinct mycoplasmas. Infect. Immun. 66, 3470–3475 (1998).
Google Scholar
Noormohammadi, A. H. et al. Mycoplasma synoviae has two distinct phase-variable major membrane antigens, one of which is a putative hemagglutinin. Infect. Immun. 65, 2542–2547 (1997).
Google Scholar
Markham, P. F., Glew, M. D., Browning, G. F., Whithear, K. G. & Walker, I. D. Expression of Two Members of the pMGA Gene Family of Mycoplasma gallisepticum Oscillates and Is Influenced by pMGA-Specific Antibodies. Infect. Immun. 66, 2845–2853 (1998).
Google Scholar
Pflaum, K., Tulman, E. R., Beaudet, J., Liao, X. & Geary, S. J. Global changes in mycoplasma gallisepticum phase-variable Lipoprotein gene vlhA expression during in vivo infection of the natural chicken host. Infect. Immun. 84, 351–355 (2016).
Google Scholar
Pflaum, K. et al. The influence of host tissue on M. gallisepticum vlhA gene expression. Vet. Microbiol. 251, 108891 (2020).
Google Scholar
Noormohammadi, A. H. Role of phenotypic diversity in pathogenesis of avian mycoplasmosis. Avian Pathol. 36, 439–444 (2007).
Google Scholar
Tulman, E. R. et al. Extensive variation in surface lipoprotein gene content and genomic changes associated with virulence during evolution of a novel North American house finch epizootic strain of Mycoplasma gallisepticum. Microbiology 158, 2073–2088 (2012).
Google Scholar
Saito, S. et al. Cloning and DNA sequence of a 29 kilodalton polypeptide gene of Mycoplasma gallisepticum as a possible protective antigen. Vaccine 11, 1061–1066 (1993).
Google Scholar
Awate, S., Babiuk, L. A. & Mutwiri, G. Mechanisms of action of adjuvants. Front. Immunol. 4, 1–10 (2013).
Google Scholar
Jansen, T., Hofmans, M. P. M., Theelen, M. J. G. & Schijns, V. E. J. C. Structure–activity relations of water-in-oil vaccine formulations and induced antigen-specific antibody responses. Vaccine 23, 1053–1060 (2005).
Google Scholar
Tizard, I. R. Adjuvants and adjuvanticity. in Vaccines for Veterinarians 75-86.e1 https://doi.org/10.1016/B978-0-323-68299-2.00016-2 (Elsevier, 2021).
Kool, M. et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J. Exp. Med. 205, 869–882 (2008).
Google Scholar
Nguyen-Contant, P., Sangster, M. Y. & Topham, D. J. Squalene-based influenza vaccine adjuvants and their impact on the hemagglutinin-specific B cell response. Pathogens 10, 355 (2021).
Google Scholar
Fensterheim, B. A. et al. The TLR4 agonist Monophosphoryl Lipid A drives broad resistance to infection via dynamic reprogramming of macrophage metabolism. J. Immunol. 200, 3777–3789 (2018).
Google Scholar
Brownlie, R. et al. Chicken TLR21 acts as a functional homologue to mammalian TLR9 in the recognition of CpG oligodeoxynucleotides. Mol. Immunol. 46, 3163–3170 (2009).
Google Scholar
Oven, I. et al. Diacylated lipopeptide from Mycoplasma synoviae mediates TLR15 induced innate immune responses. Vet. Res. 44, 99 (2013).
Google Scholar
Higuchi, M. et al. Combinational recognition of bacterial lipoproteins and peptidoglycan by chicken Toll-like receptor 2 subfamily. Dev. Comp. Immunol. 32, 147–155 (2008).
Google Scholar
Jan, G., Fontenelle, C., Le Hénaff, M. & Wróblewski, H. Acylation and immunological properties of Mycoplasma gallisepticum membrane proteins. Res. Microbiol. 146, 739–750 (1995).
Google Scholar
Kulappu Arachchige, S. N. et al. Measures of tracheal lesions are more discriminatory and reproducible indications of chronic respiratory disease caused by Mycoplasma gallisepticum in poultry. Avian Pathol. 51, 550–560 (2022).
Google Scholar
Nunoya, T., Tajima, M., Yagihashi, T. & Sannai, S. Evaluation of respiratory lesions in chickens induced by Mycoplasma gallisepticum. Jpn. J. Vet. Sci. 49, 621–629 (1987).
Google Scholar
Lam, K. M. & Lin, W. Resistance of chickens immunized against Mycoplasma gallisepticum is mediated by bursal dependent lymphoid cells. Vet. Microbiol. 9, 509–514 (1984).
Google Scholar
Papazisi, L. et al. A modified live Mycoplasma gallisepticum vaccine to protect chickens from respiratory disease. Vaccine 20, 3709–3719 (2002).
Google Scholar
Javed, M. A. et al. Correlates of immune protection in chickens vaccinated with Mycoplasma gallisepticum Strain GT5 following challenge with pathogenic M. gallisepticum Strain R low. Infect. Immun. 73, 5410–5419 (2005).
Google Scholar
Kulappu Arachchige, S. N. et al. Mucosal immune responses in the trachea after chronic infection with Mycoplasma gallisepticum in unvaccinated and vaccinated mature chickens. Cell. Microbiol. 23, 1–17 (2021).
Google Scholar
Gaunson, J. E., Philip, C. J., Whithear, K. G. & Browning, G. F. The cellular immune response in the tracheal mucosa to Mycoplasma gallisepticum in vaccinated and unvaccinated chickens in the acute and chronic stages of disease. Vaccine 24, 2627–2633 (2006).
Google Scholar
Miao, Y. et al. Mycoplasma gallisepticum induced inflammation-mediated Th1/Th2 immune imbalance via JAK/STAT signaling pathway in chicken trachea: Involvement of respiratory microbiota. Vet. Microbiol. 265, 109330 (2022).
Google Scholar
Zhao, J., Wang, X. & Wang, Y. Relationships between Th1/Th2 cytokine profiles and chest radiographic manifestations in childhood Mycoplasma pneumoniae pneumonia. Ther. Clin. Risk Manag. 12, 1683–1692 (2016).
Google Scholar
Martinson, J. A. et al. Impact of class A, B and C CpG‐oligodeoxynucleotides on in vitro activation of innate immune cells in human immunodeficiency virus‐1 infected individuals. Immunology 120, 526–535 (2007).
Google Scholar
Netea, M. G., Van Der Meer, J. W. M., Sutmuller, R. P., Adema, G. J. & Kullberg, B.-J. From the Th1/Th2 Paradigm towards a Toll-Like Receptor/T-Helper Bias. Antimicrob. Agents Chemother. 49, 3991–3996 (2005).
Google Scholar
Braun, V. & Hantke, K. Lipoproteins: Structure, Function, Biosynthesis. in Bacterial Cell Walls and Membranes (ed. Kuhn, A.) vol. 92 39–77 (Springer International Publishing, Cham, 2019).
Riteau, N. et al. Water-in-oil–only adjuvants selectively promote T follicular helper cell polarization through a Type I IFN and IL-6–dependent pathway. J. Immunol. 197, 3884–3893 (2016).
Google Scholar
Calabro, S. et al. The adjuvant effect of MF59 is due to the oil-in-water emulsion formulation, none of the individual components induce a comparable adjuvant effect. Vaccine 31, 3363–3369 (2013).
Google Scholar
Ott, G. et al. MF59 design and evaluation of a safe and potent adjuvant for human vaccines. in Vaccine Design (eds. Powell, M. F. & Newman, M. J.) vol. 6 277–296 (Springer US, Boston, MA, 1995).
Kim, E. H. et al. Squalene emulsion-based vaccine adjuvants stimulate CD8 T cell, but not antibody responses, through a RIPK3-dependent pathway. eLife 9, e52687 (2020).
Google Scholar
Hutchison, S. et al. Antigen depot is not required for alum adjuvanticity. FASEB J. 26, 1272–1279 (2012).
Google Scholar
Colaprico, A. et al. Adsorption onto aluminum hydroxide adjuvant protects antigens from degradation. Vaccine 38, 3600–3609 (2020).
Google Scholar
Temperley, N. D., Berlin, S., Paton, I. R., Griffin, D. K. & Burt, D. W. Evolution of the chicken Toll-like receptor gene family: A story of gene gain and gene loss. BMC Genomics 9, 62 (2008).
Google Scholar
Nawab, A. et al. Chicken toll-like receptors and their significance in immune response and disease resistance. Int. Rev. Immunol. 38, 284–306 (2019).
Google Scholar
Gürsel, M., Verthelyi, D., Gürsel, I., Ishii, K. J. & Klinman, D. M. Differential and competitive activation of human immune cells by distinct classes of CpG oligodeoxynucleotide. J. Leukoc. Biol. 71, 813–820 (2002).
Google Scholar
Hartmann, G. et al. Delineation of a CpG Phosphorothioate Oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J. Immunol. 164, 1617–1624 (2000).
Google Scholar