Close Menu
  • Home
  • Vaccines
  • Politics
  • Health
  • Tech
  • Sports
  • Research
  • Fitness
  • Careers
What's Hot

Health Canada approves Novartis’ KISQALI® for HR+/HER2- early breast cancer patients at high risk of recurrence

Sheriff, county lawyer seeking mental health funds at Minnesota State Capitol

Chronic absences have not disappeared. Research shows that poor children are most hurt.

Facebook X (Twitter) Instagram
subjectional.com
Subscribe
  • Home
  • Vaccines
  • Politics
  • Health
  • Tech
  • Sports
  • Research
  • Fitness
  • Careers
subjectional.com
Home » Rationally designed Mycoplasma gallisepticum vaccine using a recombinant subunit approach
Vaccines

Rationally designed Mycoplasma gallisepticum vaccine using a recombinant subunit approach

Paul E.By Paul E.September 28, 2024No Comments11 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Ley, D. H. Diseases of Poultry, 12th ed. in Diseases of Poultry (eds. Saif, Y. et al.) 807–834 (Blackwell Publishing Press, Ames, IA, 2008).

Carpenter, T. E., Mallinson, E. T., Miller, K. F., Gentry, R. F. & Schwartz, L. D. Vaccination with F-strain Mycoplasma gallisepticum to reduce production losses in layer chickens. Avian Dis. 25, 404–409 (1981).

Article 
CAS 
PubMed 

Google Scholar 

Johnson, D. C., Emory, W. H., Kleven, S. H. & Stallknecht, D. E. A Mycoplasma gallisepticum epornitic in turkeys: its epidemiology and eradication. Avian Dis. 25, 1047–1052 (1981).

Article 
CAS 
PubMed 

Google Scholar 

Mohammed, H. O., Carpenter, T. E. & Yamamoto, R. Evaluation of factors associated with infection of commercial layers with Mycoplasma gallisepticum and M. synoviae. Avian Dis. 31, 470–476 (1987).

Article 
CAS 
PubMed 

Google Scholar 

Mohammed, H. O., Carpenter, T. E. & Yamamoto, R. Economic impact of Mycoplasma gallisepticum and M. synoviae in commercial layer flocks. Avian Dis. 31, 477–482 (1987).

Article 
CAS 
PubMed 

Google Scholar 

Stipkovits, L. & Kempf, I. Mycoplasmoses in poultry. Rev. Sci. Tech. Int. Epizoot. 15, 1495–1525 (1996).

Article 
CAS 

Google Scholar 

USDA. National Poultry Improvement Plan Program Standards. (2019).

Yoder, H. W. Avian Mycoplasmas. in Diagnostic Procedure in Veterinary Bacteriology and Mycology 333–341 https://doi.org/10.1016/B978-0-12-161775-2.50030-X (Elsevier, 1990).

Ferguson-Noel, N. M. & Williams, S. M. The efficacy of Mycoplasma gallisepticum K-strain live vaccine in broiler and layer chickens. Avian Pathol. 44, 75–80 (2015).

Article 
CAS 
PubMed 

Google Scholar 

Whithear, K. G., Soeripto, Harringan, K. E. & Ghiocas, E. Safety of temperature sensitive mutant Mycoplasma gallisepticum vaccine. Aust. Vet. J. 67, 159–165 (1990).

Article 
CAS 
PubMed 

Google Scholar 

Kanci Condello, A. et al. Mycoplasma gallisepticum strain ts-304 is a safe and effective live attenuated vaccine for use in chickens. Vet. Microbiol. 244, 108654 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Evans, R. D. & Hafez, Y. S. Evaluation of a Mycoplasma gallisepticum strain exhibiting reduced virulence for prevention and control of poultry mycoplasmosis. Avian Dis. 36, 197–201 (1992).

Article 
CAS 
PubMed 

Google Scholar 

Burnham, M. R., Branton, S. L., Peebles, E. D., Lott, B. D. & Gerard, P. D. Effects of F-strain Mycoplasma gallisepticum inoculation at twelve weeks of age on performance and egg characteristics of commercial egg-laying hens. Poult. Sci. 81, 1478–1485 (2002).

Article 
CAS 
PubMed 

Google Scholar 

Lin, M. Y. & Kleven, S. H. Cross-immunity and antigenic relationships among five strains of Mycoplasma gallisepticum in young Leghorn chickens. Avian Dis. 26, 496–507 (1982).

Article 
CAS 
PubMed 

Google Scholar 

Lin, M. Y. & Kleven, S. H. Correlation of titer, preservation method, and storage of Mycoplasma gallisepticum F strain and the immune response in chickens. Avian Dis. 28, 273–277 (1984).

Article 
CAS 
PubMed 

Google Scholar 

Ricketts, C. et al. Identification of strain-specific sequences that distinguish a mycoplasma gallisepticum vaccine strain from field isolates. J. Clin. Microbiol. 55, 244–252 (2017).

Article 
CAS 
PubMed 

Google Scholar 

Talkington, F. D. & Kleven, S. H. Evaluation of protection against colonization of the chicken trachea following administration of Mycoplasma gallisepticum bacterin. Avian Dis. 29, 998–1003 (1985).

Article 
CAS 
PubMed 

Google Scholar 

Abdelwhab, E. M. et al. Detection and molecular characterization of Mycoplasma gallisepticum field infection in TS-11-vaccinated broiler breeders. J. Appl. Poult. Res. 20, 390–396 (2011).

Article 

Google Scholar 

Bwala, D. G., Solomon, P., Duncan, N., Wandrag, D. B. R. & Abolnik, C. Assessment of Mycoplasma gallisepticum vaccine efficacy in a co-infection challenge model with QX-like infectious bronchitis virus. Avian Pathol. 47, 261–270 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Ley, D. H. et al. Transmissibility of live Mycoplasma gallisepticum vaccine strains ts-11 and 6/85 from vaccinated layer pullets to sentinel poultry. Avian Dis. 41, 187–194 (1997).

Article 
CAS 
PubMed 

Google Scholar 

Steinlage, S. J. T. et al. Isolation and characterization of a 6/85-like mycoplasma gallisepticum from commercial laying hens. Avian Dis. 47, 499–505 (2003).

Article 

Google Scholar 

El Gazzar, M., Laibinis, V. A. & Ferguson-Noel, N. Characterization of a ts-11–like Mycoplasma gallisepticum isolate from commercial broiler chickens. Avian Dis. 55, 569–574 (2011).

Article 
CAS 
PubMed 

Google Scholar 

Armour, N. K. & Ferguson-Noel, N. Evaluation of the egg transmission and pathogenicity of Mycoplasma gallisepticum isolates genotyped as ts-11. Avian Pathol. 44, 296–304 (2015).

Article 
CAS 
PubMed 

Google Scholar 

Leigh, S. A. & Evans, J. D. Genetic comparison of the Mycoplasma gallisepticum 6/85 vaccine strain and 6/85-like field isolates. Vet. Microbiol. 291, 110008 (2024).

Article 
CAS 
PubMed 

Google Scholar 

Papazisi, L. et al. GapA and CrmA coexpression is essential for Mycoplasma gallisepticum cytadherence and virulence. Infect. Immun. 70, 6839–6845 (2002).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Indiková, I. et al. Role of the GapA and CrmA Cytadhesins of Mycoplasma gallisepticum in promoting virulence and host colonization. Infect. Immun. 81, 1618–1624 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar 

Goh, M. S., Gorton, T. S., Forsyth, M. H., Troy, K. E. & Geary, S. J. Molecular and biochemical analysis of a 105 kDa Mycoplasma gallisepticum cytadhesin(GapA). Microbiology 144, 2971–2978 (1998).

Article 
CAS 
PubMed 

Google Scholar 

Noormohammadi, A. H., Markham, P. F., Duffy, M. F., Whithear, K. G. & Browning, G. F. Multigene families encoding the major Hemagglutinins in phylogenetically distinct mycoplasmas. Infect. Immun. 66, 3470–3475 (1998).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Noormohammadi, A. H. et al. Mycoplasma synoviae has two distinct phase-variable major membrane antigens, one of which is a putative hemagglutinin. Infect. Immun. 65, 2542–2547 (1997).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Markham, P. F., Glew, M. D., Browning, G. F., Whithear, K. G. & Walker, I. D. Expression of Two Members of the pMGA Gene Family of Mycoplasma gallisepticum Oscillates and Is Influenced by pMGA-Specific Antibodies. Infect. Immun. 66, 2845–2853 (1998).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Pflaum, K., Tulman, E. R., Beaudet, J., Liao, X. & Geary, S. J. Global changes in mycoplasma gallisepticum phase-variable Lipoprotein gene vlhA expression during in vivo infection of the natural chicken host. Infect. Immun. 84, 351–355 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Pflaum, K. et al. The influence of host tissue on M. gallisepticum vlhA gene expression. Vet. Microbiol. 251, 108891 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Noormohammadi, A. H. Role of phenotypic diversity in pathogenesis of avian mycoplasmosis. Avian Pathol. 36, 439–444 (2007).

Article 
PubMed 

Google Scholar 

Tulman, E. R. et al. Extensive variation in surface lipoprotein gene content and genomic changes associated with virulence during evolution of a novel North American house finch epizootic strain of Mycoplasma gallisepticum. Microbiology 158, 2073–2088 (2012).

Article 
CAS 
PubMed 

Google Scholar 

Saito, S. et al. Cloning and DNA sequence of a 29 kilodalton polypeptide gene of Mycoplasma gallisepticum as a possible protective antigen. Vaccine 11, 1061–1066 (1993).

Article 
CAS 
PubMed 

Google Scholar 

Awate, S., Babiuk, L. A. & Mutwiri, G. Mechanisms of action of adjuvants. Front. Immunol. 4, 1–10 (2013).

Article 
CAS 

Google Scholar 

Jansen, T., Hofmans, M. P. M., Theelen, M. J. G. & Schijns, V. E. J. C. Structure–activity relations of water-in-oil vaccine formulations and induced antigen-specific antibody responses. Vaccine 23, 1053–1060 (2005).

Article 
CAS 
PubMed 

Google Scholar 

Tizard, I. R. Adjuvants and adjuvanticity. in Vaccines for Veterinarians 75-86.e1 https://doi.org/10.1016/B978-0-323-68299-2.00016-2 (Elsevier, 2021).

Kool, M. et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J. Exp. Med. 205, 869–882 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Nguyen-Contant, P., Sangster, M. Y. & Topham, D. J. Squalene-based influenza vaccine adjuvants and their impact on the hemagglutinin-specific B cell response. Pathogens 10, 355 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Fensterheim, B. A. et al. The TLR4 agonist Monophosphoryl Lipid A drives broad resistance to infection via dynamic reprogramming of macrophage metabolism. J. Immunol. 200, 3777–3789 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Brownlie, R. et al. Chicken TLR21 acts as a functional homologue to mammalian TLR9 in the recognition of CpG oligodeoxynucleotides. Mol. Immunol. 46, 3163–3170 (2009).

Article 
CAS 
PubMed 

Google Scholar 

Oven, I. et al. Diacylated lipopeptide from Mycoplasma synoviae mediates TLR15 induced innate immune responses. Vet. Res. 44, 99 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar 

Higuchi, M. et al. Combinational recognition of bacterial lipoproteins and peptidoglycan by chicken Toll-like receptor 2 subfamily. Dev. Comp. Immunol. 32, 147–155 (2008).

Article 
CAS 
PubMed 

Google Scholar 

Jan, G., Fontenelle, C., Le Hénaff, M. & Wróblewski, H. Acylation and immunological properties of Mycoplasma gallisepticum membrane proteins. Res. Microbiol. 146, 739–750 (1995).

Article 
CAS 
PubMed 

Google Scholar 

Kulappu Arachchige, S. N. et al. Measures of tracheal lesions are more discriminatory and reproducible indications of chronic respiratory disease caused by Mycoplasma gallisepticum in poultry. Avian Pathol. 51, 550–560 (2022).

Article 
PubMed 

Google Scholar 

Nunoya, T., Tajima, M., Yagihashi, T. & Sannai, S. Evaluation of respiratory lesions in chickens induced by Mycoplasma gallisepticum. Jpn. J. Vet. Sci. 49, 621–629 (1987).

Article 
CAS 

Google Scholar 

Lam, K. M. & Lin, W. Resistance of chickens immunized against Mycoplasma gallisepticum is mediated by bursal dependent lymphoid cells. Vet. Microbiol. 9, 509–514 (1984).

Article 
CAS 
PubMed 

Google Scholar 

Papazisi, L. et al. A modified live Mycoplasma gallisepticum vaccine to protect chickens from respiratory disease. Vaccine 20, 3709–3719 (2002).

Article 
CAS 
PubMed 

Google Scholar 

Javed, M. A. et al. Correlates of immune protection in chickens vaccinated with Mycoplasma gallisepticum Strain GT5 following challenge with pathogenic M. gallisepticum Strain R low. Infect. Immun. 73, 5410–5419 (2005).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kulappu Arachchige, S. N. et al. Mucosal immune responses in the trachea after chronic infection with Mycoplasma gallisepticum in unvaccinated and vaccinated mature chickens. Cell. Microbiol. 23, 1–17 (2021).

Article 

Google Scholar 

Gaunson, J. E., Philip, C. J., Whithear, K. G. & Browning, G. F. The cellular immune response in the tracheal mucosa to Mycoplasma gallisepticum in vaccinated and unvaccinated chickens in the acute and chronic stages of disease. Vaccine 24, 2627–2633 (2006).

Article 
CAS 
PubMed 

Google Scholar 

Miao, Y. et al. Mycoplasma gallisepticum induced inflammation-mediated Th1/Th2 immune imbalance via JAK/STAT signaling pathway in chicken trachea: Involvement of respiratory microbiota. Vet. Microbiol. 265, 109330 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Zhao, J., Wang, X. & Wang, Y. Relationships between Th1/Th2 cytokine profiles and chest radiographic manifestations in childhood Mycoplasma pneumoniae pneumonia. Ther. Clin. Risk Manag. 12, 1683–1692 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Martinson, J. A. et al. Impact of class A, B and C CpG‐oligodeoxynucleotides on in vitro activation of innate immune cells in human immunodeficiency virus‐1 infected individuals. Immunology 120, 526–535 (2007).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Netea, M. G., Van Der Meer, J. W. M., Sutmuller, R. P., Adema, G. J. & Kullberg, B.-J. From the Th1/Th2 Paradigm towards a Toll-Like Receptor/T-Helper Bias. Antimicrob. Agents Chemother. 49, 3991–3996 (2005).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Braun, V. & Hantke, K. Lipoproteins: Structure, Function, Biosynthesis. in Bacterial Cell Walls and Membranes (ed. Kuhn, A.) vol. 92 39–77 (Springer International Publishing, Cham, 2019).

Riteau, N. et al. Water-in-oil–only adjuvants selectively promote T follicular helper cell polarization through a Type I IFN and IL-6–dependent pathway. J. Immunol. 197, 3884–3893 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Calabro, S. et al. The adjuvant effect of MF59 is due to the oil-in-water emulsion formulation, none of the individual components induce a comparable adjuvant effect. Vaccine 31, 3363–3369 (2013).

Article 
CAS 
PubMed 

Google Scholar 

Ott, G. et al. MF59 design and evaluation of a safe and potent adjuvant for human vaccines. in Vaccine Design (eds. Powell, M. F. & Newman, M. J.) vol. 6 277–296 (Springer US, Boston, MA, 1995).

Kim, E. H. et al. Squalene emulsion-based vaccine adjuvants stimulate CD8 T cell, but not antibody responses, through a RIPK3-dependent pathway. eLife 9, e52687 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hutchison, S. et al. Antigen depot is not required for alum adjuvanticity. FASEB J. 26, 1272–1279 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Colaprico, A. et al. Adsorption onto aluminum hydroxide adjuvant protects antigens from degradation. Vaccine 38, 3600–3609 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Temperley, N. D., Berlin, S., Paton, I. R., Griffin, D. K. & Burt, D. W. Evolution of the chicken Toll-like receptor gene family: A story of gene gain and gene loss. BMC Genomics 9, 62 (2008).

Article 
PubMed 
PubMed Central 

Google Scholar 

Nawab, A. et al. Chicken toll-like receptors and their significance in immune response and disease resistance. Int. Rev. Immunol. 38, 284–306 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Gürsel, M., Verthelyi, D., Gürsel, I., Ishii, K. J. & Klinman, D. M. Differential and competitive activation of human immune cells by distinct classes of CpG oligodeoxynucleotide. J. Leukoc. Biol. 71, 813–820 (2002).

Article 
PubMed 

Google Scholar 

Hartmann, G. et al. Delineation of a CpG Phosphorothioate Oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J. Immunol. 164, 1617–1624 (2000).

Article 
CAS 
PubMed 

Google Scholar 



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleThe most sophisticated AI is more likely to lie, a worrying finding
Next Article Intermediate Unit 1 launches Career Mobile Lab for local school districts
Paul E.
  • Website

Related Posts

Kentucky leaders emphasize whooping cough vaccination

October 31, 2024

Safety, efficacy and immunogenicity of aerosolized Ad5-nCoV COVID-19 vaccine in a non-inferiority randomized controlled trial

October 31, 2024

Trust is important, but increasing vaccination rates also requires three things

October 31, 2024
Leave A Reply Cancel Reply

Latest Posts

Health Canada approves Novartis’ KISQALI® for HR+/HER2- early breast cancer patients at high risk of recurrence

Sheriff, county lawyer seeking mental health funds at Minnesota State Capitol

Chronic absences have not disappeared. Research shows that poor children are most hurt.

Transport Secretary reveals overhaul of aging pneumatic transport systems

Latest Posts

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Welcome to Subjectional!

At Subjectional, we believe that informed opinions are the foundation of a vibrant society. Our mission is to provide insightful, engaging, and balanced information across a diverse range of topics that matter to you. Whether you’re interested in the latest developments in health, navigating the complexities of politics, staying updated on sports, exploring technological advancements, or advancing your career, we’ve got you covered.

Facebook X (Twitter) Instagram Pinterest YouTube

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Facebook X (Twitter) Instagram Pinterest
  • Home
  • About Us
  • Advertise with Us
  • Contact us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 subjectional. Designed by subjectional.

Type above and press Enter to search. Press Esc to cancel.