Kouhpayeh, H. An overview of complications and mortality of Crimean-Congo hemorrhagic fever. Int. J. Infect. 6, e91707 (2019).
Google Scholar
Nasirian, H. New aspects about Crimean-Congo hemorrhagic fever (CCHF) cases and associated fatality trends: a global systematic review and meta-analysis. Comp. Immunol. Microbiol. Infect. Dis. 69, 101429 (2020).
Google Scholar
Nasirian, H. Ticks infected with Crimean-Congo hemorrhagic fever virus (CCHFV): a decision approach systematic review and metaanalysis regarding their role as vectors. Travel Med. Infect. Dis. 47, 102309 (2022).
Google Scholar
Riccò, M., Baldassarre, A., Corrado, S., Bottazzoli, M. & Marchesi, F. Seroprevalence of Crimean Congo hemorrhagic fever virus in occupational settings: systematic review and meta-analysis. Trop. Med. Infect. Dis. 8, 452 (2023).
Google Scholar
Whitehouse, C. A. Crimean-Congo hemorrhagic fever. Antivir. Res. 64, 145–160 (2004).
Google Scholar
Aradaib, I. E. et al. Nosocomial outbreak of Crimean-Congo hemorrhagic fever, Sudan. Emerg. Infect. Dis. 16, 837–839 (2010).
Google Scholar
Patel, A. K. et al. First Crimean-Congo hemorrhagic fever outbreak in India. J. Assoc. Physicians India 59, 585–589 (2011).
Estrada-Peña, A. et al. Crimean-Congo hemorrhagic fever virus in ticks, southwestern Europe, 2010. Emerg. Infect. Dis. 18, 179–180 (2012).
Google Scholar
Messina, J. P. et al. The global distribution of Crimean-Congo hemorrhagic fever. Trans. R. Soc. Trop. Med. Hyg. 109, 503–513 (2015).
Google Scholar
Akuffo, R. et al. Crimean-Congo hemorrhagic fever virus in livestock ticks and animal handler seroprevalence at an abattoir in Ghana. BMC Infect. Dis. 16, 324 (2016).
Google Scholar
Al-Abri, S. S. et al. Current status of Crimean-Congo haemorrhagic fever in the World Health Organization Eastern Mediterranean Region: issues, challenges, and future directions. Int. J. Infect. Dis. 58, 82–89 (2017).
Google Scholar
Dowall, S. D. et al. Protective effects of a modified Vaccinia Ankara-based vaccine candidate against Crimean-Congo haemorrhagic fever virus require both cellular and humoral responses. PLoS ONE 11, e0156637 (2016).
Google Scholar
Negredo, A. et al. Autochthonous Crimean–Congo hemorrhagic fever in Spain. N. Engl. J. Med. 377, 154–161 (2017).
Google Scholar
de la Fuente, J. et al. Perception of ticks and tick-borne diseases worldwide. Pathogens 12, 1258 (2023).
Google Scholar
Messina, J. P. & Wint, G. R. W. The spatial distribution of Crimean–Congo haemorrhagic fever and its potential vectors in Europe and beyond. Insects 14, 771 (2023).
Google Scholar
Jameson, L. J., Morgan, P. J., Medlock, J. M., Watola, G. & Vaux, A. G. C. Importation of Hyalomma marginatum, vector of Crimean-Congo haemorrhagic fever virus, into the United Kingdom by migratory birds. Ticks Tick Borne Dis. 3, 95–99 (2012).
Google Scholar
Gargili, A. et al. The role of ticks in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus: a review of published field and laboratory studies. Antivir. Res. 144, 93–119 (2017).
Google Scholar
Duscher, G. G. et al. Adult Hyalomma marginatum tick positive for Rickettsia aeschlimannii in Austria. Eur. Surveill. 23, 1800595 (2018).
Google Scholar
Tajeri, S. & Razmi, G. R. Hyalomma anatolicum anatolicum and Hyalomma dromedarii (Acari: Ixodidae) imbibe bovine blood in vitro by utilizing an artificial feeding system. Vet. Parasitol. 180, 332–335 (2011).
Google Scholar
Teng, A.-Y. et al. Mapping the viruses belonging to the order Bunyavirales in China. Infect. Dis. Poverty 11, 81 (2022).
Google Scholar
Logan, T. M. et al. Replication of Crimean-Congo hemorrhagic fever virus in four species of ixodid ticks (Acari) infected experimentally. J. Med. Entomol. 27, 537–542 (1990).
Google Scholar
Nabeth, P., Thior, M., Faye, O. & Simon, F. Human Crimean-Congo hemorrhagic fever, Sénégal. Emerg. Infect. Dis. 10, 1881–1882 (2004).
Google Scholar
Majeed, B. et al. Morbidity and mortality of Crimean-Congo hemorrhagic fever in Iraq: cases reported to the National Surveillance System, 1990–2010. Trans. R. Soc. Trop. Med. Hyg. 106, 480–483 (2012).
Google Scholar
Mostafavi, E. et al. Seroepidemiology and risk factors of Crimean-Congo hemorrhagic fever among butchers and slaughterhouse workers in southeastern Iran. Int. J. Infect. Dis. 64, 85–89 (2017).
Google Scholar
Nasirian, H. Crimean-Congo hemorrhagic fever (CCHF) seroprevalence: a systematic review and meta-analysis. Acta Trop. 196, 102–120 (2019).
Google Scholar
Temur, A. I., Kuhn, J. H., Pecor, D. B., Apanaskevich, D. A. & Keshtkar-Jahromi, M. Epidemiology of Crimean-Congo hemorrhagic fever (CCHF) in Africa—underestimated for decades. Am. J. Trop. Med. Hyg. 104, 1978–1990 (2021).
Google Scholar
De Meneghi, D., Stachurski, F. & Adakal, H. Experiences in tick control by acaricide in the traditional cattle sector in Zambia and Burkina Faso: possible environmental and public health implications. Front. Public Health 4, 239 (2016).
Google Scholar
Ahata, B. & Akçapınar, G. B. CCHFV vaccine development, current challenges, limitations, and future directions. Front. Immunol. 14, 1238882 (2023).
Google Scholar
Saunders, J. E. et al. Adenoviral vectored vaccination protects against Crimean-Congo haemorrhagic fever disease in a lethal challenge model. eBioMedicine 90, 104523 (2023).
Google Scholar
Appelberg, S. et al. Nucleoside-modified mRNA vaccines protect IFNAR-/- mice against Crimean-Congo hemorrhagic fever virus infection. J. Virol. 96, e0156821 (2022).
Google Scholar
Maltezou, H. C. & Papa, A. Crimean-Congo hemorrhagic fever: epidemiological trends and controversies in treatment. BMC Med. 9, 131 (2011).
Google Scholar
Kunz, S. E. & Kemp, D. H. Insecticides and acaricides: resistance and environmental impact. Rev. Sci. Tech. 13, 1249–1286 (1994).
Google Scholar
Abbas, R. Z., Zaman, M. A., Colwell, D. D., Gilleard, J. & Iqbal, Z. Acaricide resistance in cattle ticks and approaches to its management: the state of play. Vet. Parasitol. 203, 6–20 (2014).
Google Scholar
Vudriko, P. et al. Emergence of multi-acaricide resistant Rhipicephalus ticks and its implication on chemical tick control in Uganda. Parasit. Vectors 9, 4 (2016).
Google Scholar
Vatandoost, H. et al. Field efficacy of flumethrin pour-on against livestock ticks in Iran. Int. J. Acarol. 38, 457–464 (2012).
Google Scholar
Jyoti, Singh, N. K., Singh, H. & Rath, S. S. Modified larval packet test based detection of amitraz resistance in Hyalomma anatolicum Koch (Acari: Ixodidae) from Punjab districts of India. Int. J. Acarol. 45, 391–394 (2019).
Google Scholar
Shyma, K. P., Gupta, J. P., Parsani, H. R., Ankuya, K. J. & Singh, V. Ivermectin resistance in the multi-host tick Hyalomma anatolicum (Acari: Ixodidae) in India. Ticks Tick Borne Dis. 12, 101791 (2021).
Google Scholar
Horak, I. G., Gallivan, G. J., Spickett, A. M. & Potgieter, A. L. F. Effect of burning on the numbers of questing ticks collected by dragging. Onderstepoort J. Vet. Res. 73, 163–174 (2006).
Google Scholar
Frisch, J. E. Towards a permanent solution for controlling cattle ticks. Int. J. Parasitol. 29, 57–71 (1999).
Google Scholar
Harrison, A., Newey, S., Gilbert, L., Haydon, D. T. & Thirgood, S. Culling wildlife hosts to control disease: mountain hares, red grouse and louping ill virus. J. Appl. Ecol. 47, 926–930 (2010).
Google Scholar
Ghosh, S., Khan, M. H. & Gupta, S. C. Immunization of rabbits against Hyalomma anatolicum anatolicum using homogenates from unfed immature ticks. Indian J. Exp. Biol. 36, 167–170 (1998).
Google Scholar
Ghosh, S., Khan, M. H. & Ahmed, N. Cross-bred cattle protected against Hyalomma anatolicum anatolicum by larval antigens purified by immunoaffinity chromatography. Trop. Anim. Health Prod. 31, 263–273 (1999).
Google Scholar
de Vos, S., Zeinstra, L., Taoufik, O., Willadsen, P. & Jongejan, F. Evidence for the utility of the Bm86 antigen from Boophilus microplus in vaccination against other tick species. Exp. Appl. Acarol. 25, 245–261 (2001).
Google Scholar
Ben Said, M. et al. Molecular characterization of Bm86 gene orthologs from Hyalomma excavatum, Hyalomma dromedarii and Hyalomma marginatum marginatum and comparison with a vaccine candidate from Hyalomma scupense. Vet. Parasitol. 190, 230–240 (2012).
Google Scholar
Ben Said, M. et al. Hd86, the Bm86 tick protein ortholog in Hyalomma scupense (syn. H. detritum): expression in Pichia pastoris and analysis of nucleotides and amino acids sequences variations prior to vaccination trials. Vet. Parasitol. 183, 215–223 (2012).
Google Scholar
Kumar, B., Murugan, K., Ray, D. D. & Ghosh, S. Efficacy of rBm86 against Rhipicephalus (Boophilus) microplus (IVRI-I line) and Hyalomma anatolicum anatolicum (IVRI-II line) infestations on bovine calves. Parasitol. Res. 111, 629–635 (2012).
Google Scholar
Kumar, B. et al. Functional characterization of candidate antigens of Hyalomma anatolicum and evaluation of its cross-protective efficacy against Rhipicephalus microplus. Vaccine 35, 5682–5692 (2017).
Google Scholar
Manjunathachar, H. V. et al. Identification and characterization of vaccine candidates against Hyalomma anatolicum—vector of Crimean-Congo haemorrhagic fever virus. Transbound. Emerg. Dis. 66, 422–434 (2019).
Google Scholar
Rodríguez-Valle, M. et al. Efficacy of Rhipicephalus (Boophilus) microplus Bm86 against Hyalomma dromedarii and Amblyomma cajennense tick infestations in camels and cattle. Vaccine 30, 3453–3458 (2012).
Google Scholar
Kumar, B. et al. Comparative efficacy of rHaa86 and rBm86 against Hyalomma anatolicum anatolicum and Rhipicephalus (Boophilus) microplus. Parasite Immunol. 34, 297–301 (2012).
Google Scholar
Nandi et al. Protective efficacy of multiple epitope-based vaccine against Hyalomma anatolicum, vector of Theileria annulata and Crimean–Congo hemorrhagic fever virus. Vaccines 11, 881 (2023).
Google Scholar
Lule, S. A. et al. Widespread exposure to Crimean-Congo haemorrhagic fever in Uganda might be driven by transmission from Rhipicephalus ticks: evidence from cross-sectional and modelling studies. J. Infect. 85, 683–692 (2022).
Google Scholar
Bonnet, S. I. et al. An update of evidence for pathogen transmission by ticks of the genus Hyalomma. Pathogens 12, 513 (2023).
Google Scholar
Salehi-Vaziri, M. et al. Molecular assay on detection of Crimean Congo hemorrhagic fever (CCHF) virus in ixodid ticks collected from livestock in slaughterhouse from south of Iran. J. Arthropod Borne Dis. 14, 286–292 (2020).
Adham, D., Abazari, M., Moradi-Asl, E. & Abbasi-Ghahramanloo, A. Pattern of Crimean-Congo hemorrhagic fever related high risk behaviors among Iranian butchers and its relation to perceived self-efficacy. BMC Public Health 21, 255 (2021).
Google Scholar
Ftika, L. & Maltezou, H. C. Viral haemorrhagic fevers in healthcare settings. J. Hosp. Infect. 83, 185–192 (2013).
Google Scholar
Leblebicioglu, H. et al. Healthcare-associated Crimean-Congo haemorrhagic fever in Turkey, 2002–2014: a multicentre retrospective cross-sectional study. Clin. Microbiol. Infect. 22, 387.e1–387.e4 (2016).
Google Scholar
Gozel, M. G. et al. Recommended precaution procedures protect healthcare workers from Crimean-Congo hemorrhagic fever virus. Int. J. Infect. Dis. 17, e1046–e1050 (2013).
Google Scholar
Parlak, E., Ertürk, A., Koşan, Z., Parlak, M. & Özkurt, Z. A nosocomial outbreak of Crimean-Congo hemorrhagic fever. J. Microbiol. Infect. Dis. 5, 5 (2015).
Google Scholar
Shahid, M. F. et al. Seroprevalence of Crimean-Congo haemorrhagic fever among three selected risk human groups in disease-endemic region of Pakistan. Zoonoses Public Health 67, 755–759 (2020).
Google Scholar
Koculu, S., Oncul, A., Onal, O., Yesilbag, Z. & Uzun, N. Evaluation of knowledge of the healthcare personnel working in Giresun province regarding Crimean-Congo hemorrhagic fever before and after educational training. J. Vector Borne Dis. 52, 166–170 (2015).
Google Scholar
de la Fuente, J. et al. A ten-year review of commercial vaccine performance for control of tick infestations on cattle. Anim. Health Res. Rev. 8, 23–28 (2007).
Google Scholar
Parthasarathi, B. C., Kumar, B. & Ghosh, S. Current status and future prospects of multi-antigen tick vaccine. J. Vector Borne Dis. 58, 183–192 (2021).
Google Scholar
Kasaija, P. D. et al. Inspiring anti-tick vaccine research, development and deployment in tropical Africa for the control of cattle ticks: review and insights. Vaccines 11, 99 (2023).
Google Scholar
Estrada-Peña, A. & de la Fuente, J. Evolution of tick vaccinology highlights changes in paradigms in this research area. Vaccines 11, 253 (2023).
Google Scholar
de la Fuente, J. & Estrada-Peña, A. Why new vaccines for the control of ectoparasite vectors have not been registered and commercialized? Vaccines 7, 75 (2019).
Google Scholar
Kumar, B., Manjunathachar, H. V. & Ghosh, S. A review on Hyalomma species infestations on human and animals and progress on management strategies. Heliyon 6, e05675 (2020).
Google Scholar
Parthasarathi, B. C. et al. Co-immunization efficacy of recombinant antigens against Rhipicephalus microplus and Hyalomma anatolicum tick infestations. Pathogens 12, 433 (2023).
Google Scholar
Contreras, M., Kasaija, P. D., Kabi, F., Mugerwa, S. & De la Fuente, J. The correlation between Subolesin-reactive epitopes and vaccine efficacy. Vaccines 10, 1327 (2022).
Google Scholar
Contreras, M., Artigas-Jerónimo, S., Pastor Comín, J. J. & de la Fuente, J. A quantum vaccinomics approach based on protein-protein interactions. Methods Mol. Biol. 2411, 287–305 (2022).
Google Scholar
Tipih, T. & Burt, F. J. Crimean–Congo hemorrhagic fever virus: advances in vaccine development. Biores Open Access 9, 137–150 (2020).
Google Scholar
Martinez-Guijosa, J. et al. Tuning oral-bait delivery strategies for red deer in Mediterranean ecosystems. Eur. J. Wildl. Res. 66, 51 (2020).
Google Scholar
Kasaija, P. D. et al. Oral vaccine formulation combining tick Subolesin with heat inactivated mycobacteria provides control of cross-species cattle tick infestations. Vaccine 40, 4564–4573 (2022).
Google Scholar
Sajid, A. et al. mRNA vaccination induces tick resistance and prevents transmission of the Lyme disease agent. Sci. Transl. Med. 13, eabj9827 (2021).
Google Scholar
Matias, J. et al. Tick immunity using mRNA, DNA and protein-based Salp14 delivery strategies. Vaccine 39, 7661–7668 (2021).
Google Scholar
Matias, J. et al. Specific mRNA lipid nanoparticles and acquired resistance to ticks. Vaccine 41, 4996–5002 (2023).
Google Scholar
Boulanger, N. & Wikel, S. Vaccines against tick-borne diseases: a big step forward? Trends Parasitol. 39, 989–990 (2023).
Google Scholar
de la Fuente, J. et al. Autocidal control of ticks by silencing of a single gene by RNA interference. Biochem. Biophys. Res. Commun. 344, 332–338 (2006).
Google Scholar
Durvasula, R. V. et al. Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc. Natl Acad. Sci. USA 94, 3274–3278 (1997).
Google Scholar
Koosha, M., Vatandoost, H., Karimian, F., Choubdar, N. & Oshaghi, M. A. Delivery of a genetically marked Serratia AS1 to medically important arthropods for use in RNAi and paratransgenic control strategies. Micro. Ecol. 78, 185–194 (2019).
Google Scholar
Sharma, A. et al. Cas9-mediated gene editing in the black-legged tick, Ixodes scapularis, by embryo injection and ReMOT Control. iScience 25, 103781 (2022).
Google Scholar
Mateos-Hernández, L. et al. Anti-tick microbiota vaccine impacts Ixodes ricinus performance during feeding. Vaccines 8, 702 (2020).
Google Scholar
McClure, E. E. et al. Engineering of obligate intracellular bacteria: progress, challenges and paradigms. Nat. Rev. Microbiol. 15, 544–558 (2017).
Google Scholar
Tabor, A. E. A review of Australian tick vaccine research. Vaccines 9, 1030 (2021).
Google Scholar
Benelli, G., Pavela, R., Canale, A. & Mehlhorn, H. Tick repellents and acaricides of botanical origin: a green roadmap to control tick-borne diseases? Parasitol. Res. 115, 2545–2560 (2016).
Google Scholar
Bonnet, S. I. et al. The control of Hyalomma ticks, vectors of the Crimean–Congo hemorrhagic fever virus: where are we now and where are we going? PLoS Negl. Trop. Dis. 16, e0010846 (2022).
Google Scholar
de la Fuente, J., Estrada-Peña, A. & Contreras, M. Modeling tick vaccines: a key tool to improve protection efficacy. Expert Rev. Vaccines 19, 217–225 (2020).
Google Scholar
Kasaija, P. D., Contreras, M., Kabi, F., Mugerwa, S. & de la Fuente, J. Vaccination with recombinant Subolesin antigens provides cross-tick species protection in Bos indicus and crossbred cattle in Uganda. Vaccines 8, 319 (2020).
Google Scholar
Kumar, A. et al. Immune responses against recombinant tick antigen, Bm95, for the control of Rhipicephalus (Boophilus) microplus ticks in cattle. Vet. Parasitol. 165, 119–124 (2009).
Google Scholar
Canales, M. et al. Conservation and immunogenicity of the mosquito ortholog of the tick-protective antigen, Subolesin. Parasitol. Res. 105, 97–111 (2009).
Google Scholar
Almazán, C. et al. Control of tick infestations in cattle vaccinated with bacterial membranes containing surface-exposed tick protective antigens. Vaccine 30, 265–272 (2012).
Google Scholar
Nuismer, S. L. & Bull, J. J. Self-disseminating vaccines to suppress zoonoses. Nat. Ecol. Evol. 4, 1168–1173 (2020).
Google Scholar
Scholte, F. E. M. et al. Vaccination with the Crimean-Congo hemorrhagic fever virus viral replicon vaccine induces NP-based T-cell activation and antibodies possessing Fc-mediated effector functions. Front. Cell Infect. Microbiol. 13, 1233148 (2023).
Google Scholar
Schulze, T. L., Eisen, L., Russell, K. & Jordan, R. A. Community-based integrated tick management programs: cost and feasibility scenarios. J. Med. Entomol. 60, 1048–1060 (2023).
Google Scholar
Jalilian, M., Chenary, R., Mansori, S., Sayyadi, H. & Aivazi, A.-A. Impacts of an educational program on rural women’s knowledge, attitudes and practices regarding Crimean Congo haemorrhagic fever (CCHF). J. Hum. Behav. Soc. Environ. 0, 1–10 (2022).
Valcárcel, F. et al. Emerging Hyalomma lusitanicum: from identification to vectorial role and integrated control. Med. Vet. Entomol. 37, 425–459 (2023).
Google Scholar
Wang, J. et al. Insight into Hyalomma anatolicum biology by comparative genomics analyses. Int. J. Parasitol. S0020-7519, 00192–00193 (2023).
Johnson, N. et al. One health approach to tick and tick-borne disease surveillance in the United Kingdom. Int. J. Environ. Res. Public Health 19, 5833 (2022).
Google Scholar