Close Menu
  • Home
  • Vaccines
  • Politics
  • Health
  • Tech
  • Sports
  • Research
  • Fitness
  • Careers
What's Hot

Health Canada approves Novartis’ KISQALI® for HR+/HER2- early breast cancer patients at high risk of recurrence

Sheriff, county lawyer seeking mental health funds at Minnesota State Capitol

Chronic absences have not disappeared. Research shows that poor children are most hurt.

Facebook X (Twitter) Instagram
subjectional.com
Subscribe
  • Home
  • Vaccines
  • Politics
  • Health
  • Tech
  • Sports
  • Research
  • Fitness
  • Careers
subjectional.com
Home » Interventions for the control of Crimean-Congo hemorrhagic fever and tick vectors
Vaccines

Interventions for the control of Crimean-Congo hemorrhagic fever and tick vectors

Paul E.By Paul E.October 1, 2024No Comments14 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Kouhpayeh, H. An overview of complications and mortality of Crimean-Congo hemorrhagic fever. Int. J. Infect. 6, e91707 (2019).

Article 

Google Scholar 

Nasirian, H. New aspects about Crimean-Congo hemorrhagic fever (CCHF) cases and associated fatality trends: a global systematic review and meta-analysis. Comp. Immunol. Microbiol. Infect. Dis. 69, 101429 (2020).

Article 

Google Scholar 

Nasirian, H. Ticks infected with Crimean-Congo hemorrhagic fever virus (CCHFV): a decision approach systematic review and metaanalysis regarding their role as vectors. Travel Med. Infect. Dis. 47, 102309 (2022).

Article 

Google Scholar 

Riccò, M., Baldassarre, A., Corrado, S., Bottazzoli, M. & Marchesi, F. Seroprevalence of Crimean Congo hemorrhagic fever virus in occupational settings: systematic review and meta-analysis. Trop. Med. Infect. Dis. 8, 452 (2023).

Article 

Google Scholar 

Whitehouse, C. A. Crimean-Congo hemorrhagic fever. Antivir. Res. 64, 145–160 (2004).

Article 
CAS 

Google Scholar 

Aradaib, I. E. et al. Nosocomial outbreak of Crimean-Congo hemorrhagic fever, Sudan. Emerg. Infect. Dis. 16, 837–839 (2010).

Article 

Google Scholar 

Patel, A. K. et al. First Crimean-Congo hemorrhagic fever outbreak in India. J. Assoc. Physicians India 59, 585–589 (2011).

Google Scholar 

Estrada-Peña, A. et al. Crimean-Congo hemorrhagic fever virus in ticks, southwestern Europe, 2010. Emerg. Infect. Dis. 18, 179–180 (2012).

Article 

Google Scholar 

Messina, J. P. et al. The global distribution of Crimean-Congo hemorrhagic fever. Trans. R. Soc. Trop. Med. Hyg. 109, 503–513 (2015).

Article 

Google Scholar 

Akuffo, R. et al. Crimean-Congo hemorrhagic fever virus in livestock ticks and animal handler seroprevalence at an abattoir in Ghana. BMC Infect. Dis. 16, 324 (2016).

Article 
CAS 

Google Scholar 

Al-Abri, S. S. et al. Current status of Crimean-Congo haemorrhagic fever in the World Health Organization Eastern Mediterranean Region: issues, challenges, and future directions. Int. J. Infect. Dis. 58, 82–89 (2017).

Article 

Google Scholar 

Dowall, S. D. et al. Protective effects of a modified Vaccinia Ankara-based vaccine candidate against Crimean-Congo haemorrhagic fever virus require both cellular and humoral responses. PLoS ONE 11, e0156637 (2016).

Article 

Google Scholar 

Negredo, A. et al. Autochthonous Crimean–Congo hemorrhagic fever in Spain. N. Engl. J. Med. 377, 154–161 (2017).

Article 

Google Scholar 

de la Fuente, J. et al. Perception of ticks and tick-borne diseases worldwide. Pathogens 12, 1258 (2023).

Article 

Google Scholar 

Messina, J. P. & Wint, G. R. W. The spatial distribution of Crimean–Congo haemorrhagic fever and its potential vectors in Europe and beyond. Insects 14, 771 (2023).

Article 

Google Scholar 

Jameson, L. J., Morgan, P. J., Medlock, J. M., Watola, G. & Vaux, A. G. C. Importation of Hyalomma marginatum, vector of Crimean-Congo haemorrhagic fever virus, into the United Kingdom by migratory birds. Ticks Tick Borne Dis. 3, 95–99 (2012).

Article 

Google Scholar 

Gargili, A. et al. The role of ticks in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus: a review of published field and laboratory studies. Antivir. Res. 144, 93–119 (2017).

Article 
CAS 

Google Scholar 

Duscher, G. G. et al. Adult Hyalomma marginatum tick positive for Rickettsia aeschlimannii in Austria. Eur. Surveill. 23, 1800595 (2018).

Article 

Google Scholar 

Tajeri, S. & Razmi, G. R. Hyalomma anatolicum anatolicum and Hyalomma dromedarii (Acari: Ixodidae) imbibe bovine blood in vitro by utilizing an artificial feeding system. Vet. Parasitol. 180, 332–335 (2011).

Article 
CAS 

Google Scholar 

Teng, A.-Y. et al. Mapping the viruses belonging to the order Bunyavirales in China. Infect. Dis. Poverty 11, 81 (2022).

Article 

Google Scholar 

Logan, T. M. et al. Replication of Crimean-Congo hemorrhagic fever virus in four species of ixodid ticks (Acari) infected experimentally. J. Med. Entomol. 27, 537–542 (1990).

Article 
CAS 

Google Scholar 

Nabeth, P., Thior, M., Faye, O. & Simon, F. Human Crimean-Congo hemorrhagic fever, Sénégal. Emerg. Infect. Dis. 10, 1881–1882 (2004).

Article 

Google Scholar 

Majeed, B. et al. Morbidity and mortality of Crimean-Congo hemorrhagic fever in Iraq: cases reported to the National Surveillance System, 1990–2010. Trans. R. Soc. Trop. Med. Hyg. 106, 480–483 (2012).

Article 

Google Scholar 

Mostafavi, E. et al. Seroepidemiology and risk factors of Crimean-Congo hemorrhagic fever among butchers and slaughterhouse workers in southeastern Iran. Int. J. Infect. Dis. 64, 85–89 (2017).

Article 

Google Scholar 

Nasirian, H. Crimean-Congo hemorrhagic fever (CCHF) seroprevalence: a systematic review and meta-analysis. Acta Trop. 196, 102–120 (2019).

Article 

Google Scholar 

Temur, A. I., Kuhn, J. H., Pecor, D. B., Apanaskevich, D. A. & Keshtkar-Jahromi, M. Epidemiology of Crimean-Congo hemorrhagic fever (CCHF) in Africa—underestimated for decades. Am. J. Trop. Med. Hyg. 104, 1978–1990 (2021).

Article 

Google Scholar 

De Meneghi, D., Stachurski, F. & Adakal, H. Experiences in tick control by acaricide in the traditional cattle sector in Zambia and Burkina Faso: possible environmental and public health implications. Front. Public Health 4, 239 (2016).

Article 

Google Scholar 

Ahata, B. & Akçapınar, G. B. CCHFV vaccine development, current challenges, limitations, and future directions. Front. Immunol. 14, 1238882 (2023).

Article 
CAS 

Google Scholar 

Saunders, J. E. et al. Adenoviral vectored vaccination protects against Crimean-Congo haemorrhagic fever disease in a lethal challenge model. eBioMedicine 90, 104523 (2023).

Article 
CAS 

Google Scholar 

Appelberg, S. et al. Nucleoside-modified mRNA vaccines protect IFNAR-/- mice against Crimean-Congo hemorrhagic fever virus infection. J. Virol. 96, e0156821 (2022).

Article 

Google Scholar 

Maltezou, H. C. & Papa, A. Crimean-Congo hemorrhagic fever: epidemiological trends and controversies in treatment. BMC Med. 9, 131 (2011).

Article 

Google Scholar 

Kunz, S. E. & Kemp, D. H. Insecticides and acaricides: resistance and environmental impact. Rev. Sci. Tech. 13, 1249–1286 (1994).

Article 
CAS 

Google Scholar 

Abbas, R. Z., Zaman, M. A., Colwell, D. D., Gilleard, J. & Iqbal, Z. Acaricide resistance in cattle ticks and approaches to its management: the state of play. Vet. Parasitol. 203, 6–20 (2014).

Article 
CAS 

Google Scholar 

Vudriko, P. et al. Emergence of multi-acaricide resistant Rhipicephalus ticks and its implication on chemical tick control in Uganda. Parasit. Vectors 9, 4 (2016).

Article 

Google Scholar 

Vatandoost, H. et al. Field efficacy of flumethrin pour-on against livestock ticks in Iran. Int. J. Acarol. 38, 457–464 (2012).

Article 

Google Scholar 

Jyoti, Singh, N. K., Singh, H. & Rath, S. S. Modified larval packet test based detection of amitraz resistance in Hyalomma anatolicum Koch (Acari: Ixodidae) from Punjab districts of India. Int. J. Acarol. 45, 391–394 (2019).

Article 

Google Scholar 

Shyma, K. P., Gupta, J. P., Parsani, H. R., Ankuya, K. J. & Singh, V. Ivermectin resistance in the multi-host tick Hyalomma anatolicum (Acari: Ixodidae) in India. Ticks Tick Borne Dis. 12, 101791 (2021).

Article 
CAS 

Google Scholar 

Horak, I. G., Gallivan, G. J., Spickett, A. M. & Potgieter, A. L. F. Effect of burning on the numbers of questing ticks collected by dragging. Onderstepoort J. Vet. Res. 73, 163–174 (2006).

Article 
CAS 

Google Scholar 

Frisch, J. E. Towards a permanent solution for controlling cattle ticks. Int. J. Parasitol. 29, 57–71 (1999).

Article 
CAS 

Google Scholar 

Harrison, A., Newey, S., Gilbert, L., Haydon, D. T. & Thirgood, S. Culling wildlife hosts to control disease: mountain hares, red grouse and louping ill virus. J. Appl. Ecol. 47, 926–930 (2010).

Article 

Google Scholar 

Ghosh, S., Khan, M. H. & Gupta, S. C. Immunization of rabbits against Hyalomma anatolicum anatolicum using homogenates from unfed immature ticks. Indian J. Exp. Biol. 36, 167–170 (1998).

CAS 

Google Scholar 

Ghosh, S., Khan, M. H. & Ahmed, N. Cross-bred cattle protected against Hyalomma anatolicum anatolicum by larval antigens purified by immunoaffinity chromatography. Trop. Anim. Health Prod. 31, 263–273 (1999).

Article 
CAS 

Google Scholar 

de Vos, S., Zeinstra, L., Taoufik, O., Willadsen, P. & Jongejan, F. Evidence for the utility of the Bm86 antigen from Boophilus microplus in vaccination against other tick species. Exp. Appl. Acarol. 25, 245–261 (2001).

Article 

Google Scholar 

Ben Said, M. et al. Molecular characterization of Bm86 gene orthologs from Hyalomma excavatum, Hyalomma dromedarii and Hyalomma marginatum marginatum and comparison with a vaccine candidate from Hyalomma scupense. Vet. Parasitol. 190, 230–240 (2012).

Article 

Google Scholar 

Ben Said, M. et al. Hd86, the Bm86 tick protein ortholog in Hyalomma scupense (syn. H. detritum): expression in Pichia pastoris and analysis of nucleotides and amino acids sequences variations prior to vaccination trials. Vet. Parasitol. 183, 215–223 (2012).

Article 

Google Scholar 

Kumar, B., Murugan, K., Ray, D. D. & Ghosh, S. Efficacy of rBm86 against Rhipicephalus (Boophilus) microplus (IVRI-I line) and Hyalomma anatolicum anatolicum (IVRI-II line) infestations on bovine calves. Parasitol. Res. 111, 629–635 (2012).

Article 

Google Scholar 

Kumar, B. et al. Functional characterization of candidate antigens of Hyalomma anatolicum and evaluation of its cross-protective efficacy against Rhipicephalus microplus. Vaccine 35, 5682–5692 (2017).

Article 
CAS 

Google Scholar 

Manjunathachar, H. V. et al. Identification and characterization of vaccine candidates against Hyalomma anatolicum—vector of Crimean-Congo haemorrhagic fever virus. Transbound. Emerg. Dis. 66, 422–434 (2019).

Article 
CAS 

Google Scholar 

Rodríguez-Valle, M. et al. Efficacy of Rhipicephalus (Boophilus) microplus Bm86 against Hyalomma dromedarii and Amblyomma cajennense tick infestations in camels and cattle. Vaccine 30, 3453–3458 (2012).

Article 

Google Scholar 

Kumar, B. et al. Comparative efficacy of rHaa86 and rBm86 against Hyalomma anatolicum anatolicum and Rhipicephalus (Boophilus) microplus. Parasite Immunol. 34, 297–301 (2012).

Article 
CAS 

Google Scholar 

Nandi et al. Protective efficacy of multiple epitope-based vaccine against Hyalomma anatolicum, vector of Theileria annulata and Crimean–Congo hemorrhagic fever virus. Vaccines 11, 881 (2023).

Article 
CAS 

Google Scholar 

Lule, S. A. et al. Widespread exposure to Crimean-Congo haemorrhagic fever in Uganda might be driven by transmission from Rhipicephalus ticks: evidence from cross-sectional and modelling studies. J. Infect. 85, 683–692 (2022).

Article 
CAS 

Google Scholar 

Bonnet, S. I. et al. An update of evidence for pathogen transmission by ticks of the genus Hyalomma. Pathogens 12, 513 (2023).

Article 
CAS 

Google Scholar 

Salehi-Vaziri, M. et al. Molecular assay on detection of Crimean Congo hemorrhagic fever (CCHF) virus in ixodid ticks collected from livestock in slaughterhouse from south of Iran. J. Arthropod Borne Dis. 14, 286–292 (2020).

Google Scholar 

Adham, D., Abazari, M., Moradi-Asl, E. & Abbasi-Ghahramanloo, A. Pattern of Crimean-Congo hemorrhagic fever related high risk behaviors among Iranian butchers and its relation to perceived self-efficacy. BMC Public Health 21, 255 (2021).

Article 

Google Scholar 

Ftika, L. & Maltezou, H. C. Viral haemorrhagic fevers in healthcare settings. J. Hosp. Infect. 83, 185–192 (2013).

Article 
CAS 

Google Scholar 

Leblebicioglu, H. et al. Healthcare-associated Crimean-Congo haemorrhagic fever in Turkey, 2002–2014: a multicentre retrospective cross-sectional study. Clin. Microbiol. Infect. 22, 387.e1–387.e4 (2016).

Article 
CAS 

Google Scholar 

Gozel, M. G. et al. Recommended precaution procedures protect healthcare workers from Crimean-Congo hemorrhagic fever virus. Int. J. Infect. Dis. 17, e1046–e1050 (2013).

Article 
CAS 

Google Scholar 

Parlak, E., Ertürk, A., Koşan, Z., Parlak, M. & Özkurt, Z. A nosocomial outbreak of Crimean-Congo hemorrhagic fever. J. Microbiol. Infect. Dis. 5, 5 (2015).

Article 

Google Scholar 

Shahid, M. F. et al. Seroprevalence of Crimean-Congo haemorrhagic fever among three selected risk human groups in disease-endemic region of Pakistan. Zoonoses Public Health 67, 755–759 (2020).

Article 
CAS 

Google Scholar 

Koculu, S., Oncul, A., Onal, O., Yesilbag, Z. & Uzun, N. Evaluation of knowledge of the healthcare personnel working in Giresun province regarding Crimean-Congo hemorrhagic fever before and after educational training. J. Vector Borne Dis. 52, 166–170 (2015).

Article 

Google Scholar 

de la Fuente, J. et al. A ten-year review of commercial vaccine performance for control of tick infestations on cattle. Anim. Health Res. Rev. 8, 23–28 (2007).

Article 

Google Scholar 

Parthasarathi, B. C., Kumar, B. & Ghosh, S. Current status and future prospects of multi-antigen tick vaccine. J. Vector Borne Dis. 58, 183–192 (2021).

Article 
CAS 

Google Scholar 

Kasaija, P. D. et al. Inspiring anti-tick vaccine research, development and deployment in tropical Africa for the control of cattle ticks: review and insights. Vaccines 11, 99 (2023).

Article 
CAS 

Google Scholar 

Estrada-Peña, A. & de la Fuente, J. Evolution of tick vaccinology highlights changes in paradigms in this research area. Vaccines 11, 253 (2023).

Article 

Google Scholar 

de la Fuente, J. & Estrada-Peña, A. Why new vaccines for the control of ectoparasite vectors have not been registered and commercialized? Vaccines 7, 75 (2019).

Article 

Google Scholar 

Kumar, B., Manjunathachar, H. V. & Ghosh, S. A review on Hyalomma species infestations on human and animals and progress on management strategies. Heliyon 6, e05675 (2020).

Article 

Google Scholar 

Parthasarathi, B. C. et al. Co-immunization efficacy of recombinant antigens against Rhipicephalus microplus and Hyalomma anatolicum tick infestations. Pathogens 12, 433 (2023).

Article 
CAS 

Google Scholar 

Contreras, M., Kasaija, P. D., Kabi, F., Mugerwa, S. & De la Fuente, J. The correlation between Subolesin-reactive epitopes and vaccine efficacy. Vaccines 10, 1327 (2022).

Article 
CAS 

Google Scholar 

Contreras, M., Artigas-Jerónimo, S., Pastor Comín, J. J. & de la Fuente, J. A quantum vaccinomics approach based on protein-protein interactions. Methods Mol. Biol. 2411, 287–305 (2022).

Article 
CAS 

Google Scholar 

Tipih, T. & Burt, F. J. Crimean–Congo hemorrhagic fever virus: advances in vaccine development. Biores Open Access 9, 137–150 (2020).

Article 
CAS 

Google Scholar 

Martinez-Guijosa, J. et al. Tuning oral-bait delivery strategies for red deer in Mediterranean ecosystems. Eur. J. Wildl. Res. 66, 51 (2020).

Article 

Google Scholar 

Kasaija, P. D. et al. Oral vaccine formulation combining tick Subolesin with heat inactivated mycobacteria provides control of cross-species cattle tick infestations. Vaccine 40, 4564–4573 (2022).

Article 
CAS 

Google Scholar 

Sajid, A. et al. mRNA vaccination induces tick resistance and prevents transmission of the Lyme disease agent. Sci. Transl. Med. 13, eabj9827 (2021).

Article 
CAS 

Google Scholar 

Matias, J. et al. Tick immunity using mRNA, DNA and protein-based Salp14 delivery strategies. Vaccine 39, 7661–7668 (2021).

Article 
CAS 

Google Scholar 

Matias, J. et al. Specific mRNA lipid nanoparticles and acquired resistance to ticks. Vaccine 41, 4996–5002 (2023).

Article 
CAS 

Google Scholar 

Boulanger, N. & Wikel, S. Vaccines against tick-borne diseases: a big step forward? Trends Parasitol. 39, 989–990 (2023).

Article 
CAS 

Google Scholar 

de la Fuente, J. et al. Autocidal control of ticks by silencing of a single gene by RNA interference. Biochem. Biophys. Res. Commun. 344, 332–338 (2006).

Article 

Google Scholar 

Durvasula, R. V. et al. Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc. Natl Acad. Sci. USA 94, 3274–3278 (1997).

Article 
CAS 

Google Scholar 

Koosha, M., Vatandoost, H., Karimian, F., Choubdar, N. & Oshaghi, M. A. Delivery of a genetically marked Serratia AS1 to medically important arthropods for use in RNAi and paratransgenic control strategies. Micro. Ecol. 78, 185–194 (2019).

Article 
CAS 

Google Scholar 

Sharma, A. et al. Cas9-mediated gene editing in the black-legged tick, Ixodes scapularis, by embryo injection and ReMOT Control. iScience 25, 103781 (2022).

Article 
CAS 

Google Scholar 

Mateos-Hernández, L. et al. Anti-tick microbiota vaccine impacts Ixodes ricinus performance during feeding. Vaccines 8, 702 (2020).

Article 

Google Scholar 

McClure, E. E. et al. Engineering of obligate intracellular bacteria: progress, challenges and paradigms. Nat. Rev. Microbiol. 15, 544–558 (2017).

Article 
CAS 

Google Scholar 

Tabor, A. E. A review of Australian tick vaccine research. Vaccines 9, 1030 (2021).

Article 
CAS 

Google Scholar 

Benelli, G., Pavela, R., Canale, A. & Mehlhorn, H. Tick repellents and acaricides of botanical origin: a green roadmap to control tick-borne diseases? Parasitol. Res. 115, 2545–2560 (2016).

Article 

Google Scholar 

Bonnet, S. I. et al. The control of Hyalomma ticks, vectors of the Crimean–Congo hemorrhagic fever virus: where are we now and where are we going? PLoS Negl. Trop. Dis. 16, e0010846 (2022).

Article 
CAS 

Google Scholar 

de la Fuente, J., Estrada-Peña, A. & Contreras, M. Modeling tick vaccines: a key tool to improve protection efficacy. Expert Rev. Vaccines 19, 217–225 (2020).

Article 

Google Scholar 

Kasaija, P. D., Contreras, M., Kabi, F., Mugerwa, S. & de la Fuente, J. Vaccination with recombinant Subolesin antigens provides cross-tick species protection in Bos indicus and crossbred cattle in Uganda. Vaccines 8, 319 (2020).

Article 
CAS 

Google Scholar 

Kumar, A. et al. Immune responses against recombinant tick antigen, Bm95, for the control of Rhipicephalus (Boophilus) microplus ticks in cattle. Vet. Parasitol. 165, 119–124 (2009).

Article 
CAS 

Google Scholar 

Canales, M. et al. Conservation and immunogenicity of the mosquito ortholog of the tick-protective antigen, Subolesin. Parasitol. Res. 105, 97–111 (2009).

Article 

Google Scholar 

Almazán, C. et al. Control of tick infestations in cattle vaccinated with bacterial membranes containing surface-exposed tick protective antigens. Vaccine 30, 265–272 (2012).

Article 

Google Scholar 

Nuismer, S. L. & Bull, J. J. Self-disseminating vaccines to suppress zoonoses. Nat. Ecol. Evol. 4, 1168–1173 (2020).

Article 

Google Scholar 

Scholte, F. E. M. et al. Vaccination with the Crimean-Congo hemorrhagic fever virus viral replicon vaccine induces NP-based T-cell activation and antibodies possessing Fc-mediated effector functions. Front. Cell Infect. Microbiol. 13, 1233148 (2023).

Article 
CAS 

Google Scholar 

Schulze, T. L., Eisen, L., Russell, K. & Jordan, R. A. Community-based integrated tick management programs: cost and feasibility scenarios. J. Med. Entomol. 60, 1048–1060 (2023).

Article 

Google Scholar 

Jalilian, M., Chenary, R., Mansori, S., Sayyadi, H. & Aivazi, A.-A. Impacts of an educational program on rural women’s knowledge, attitudes and practices regarding Crimean Congo haemorrhagic fever (CCHF). J. Hum. Behav. Soc. Environ. 0, 1–10 (2022).

Google Scholar 

Valcárcel, F. et al. Emerging Hyalomma lusitanicum: from identification to vectorial role and integrated control. Med. Vet. Entomol. 37, 425–459 (2023).

Article 

Google Scholar 

Wang, J. et al. Insight into Hyalomma anatolicum biology by comparative genomics analyses. Int. J. Parasitol. S0020-7519, 00192–00193 (2023).

Google Scholar 

Johnson, N. et al. One health approach to tick and tick-borne disease surveillance in the United Kingdom. Int. J. Environ. Res. Public Health 19, 5833 (2022).

Article 

Google Scholar 



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleOctober 1, 2024: NIH CARE for Health Issues awards first research network hub
Next Article What to look out for in Vance and Walz’s vice presidential debate
Paul E.
  • Website

Related Posts

Kentucky leaders emphasize whooping cough vaccination

October 31, 2024

Safety, efficacy and immunogenicity of aerosolized Ad5-nCoV COVID-19 vaccine in a non-inferiority randomized controlled trial

October 31, 2024

Trust is important, but increasing vaccination rates also requires three things

October 31, 2024
Leave A Reply Cancel Reply

Latest Posts

Health Canada approves Novartis’ KISQALI® for HR+/HER2- early breast cancer patients at high risk of recurrence

Sheriff, county lawyer seeking mental health funds at Minnesota State Capitol

Chronic absences have not disappeared. Research shows that poor children are most hurt.

Transport Secretary reveals overhaul of aging pneumatic transport systems

Latest Posts

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Welcome to Subjectional!

At Subjectional, we believe that informed opinions are the foundation of a vibrant society. Our mission is to provide insightful, engaging, and balanced information across a diverse range of topics that matter to you. Whether you’re interested in the latest developments in health, navigating the complexities of politics, staying updated on sports, exploring technological advancements, or advancing your career, we’ve got you covered.

Facebook X (Twitter) Instagram Pinterest YouTube

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Facebook X (Twitter) Instagram Pinterest
  • Home
  • About Us
  • Advertise with Us
  • Contact us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 subjectional. Designed by subjectional.

Type above and press Enter to search. Press Esc to cancel.