Close Menu
  • Home
  • Vaccines
  • Politics
  • Health
  • Tech
  • Sports
  • Research
  • Fitness
  • Careers
What's Hot

Health Canada approves Novartis’ KISQALI® for HR+/HER2- early breast cancer patients at high risk of recurrence

Sheriff, county lawyer seeking mental health funds at Minnesota State Capitol

Chronic absences have not disappeared. Research shows that poor children are most hurt.

Facebook X (Twitter) Instagram
subjectional.com
Subscribe
  • Home
  • Vaccines
  • Politics
  • Health
  • Tech
  • Sports
  • Research
  • Fitness
  • Careers
subjectional.com
Home » Aerosol immunization with influenza matrix, nucleoprotein, or both prevents lung disease in pig
Vaccines

Aerosol immunization with influenza matrix, nucleoprotein, or both prevents lung disease in pig

Paul E.By Paul E.October 13, 2024No Comments11 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Teijaro, J. R. et al. Cutting edge: tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J. Immunol. 187, 5510–5514 (2011).

Article 
PubMed 

Google Scholar 

Wu, T. et al. Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J. Leukoc. Biol. 95, 215–224 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar 

Tchilian, E. & Holzer, B. Harnessing local immunity for an effective universal swine influenza vaccine. Viruses 9, 1–15 (2017).

Article 

Google Scholar 

Lau, Y. F., Wright, A. R. & Subbarao, K. The contribution of systemic and pulmonary immune effectors to vaccine-induced protection from H5N1 influenza virus infection. J. Virol. 86, 5089–5098 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar 

Song, K. et al. Genetic immunization in the lung induces potent local and systemic immune responses. Proc. Natl. Acad. Sci. USA 107, 22213–22218 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar 

McMichael, A. J., Gotch, F. M., Noble, G. R. & Beare, P. A. Cytotoxic T-cell immunity to influenza. N. Engl. J. Med. 309, 13–17 (1983).

Article 
PubMed 

Google Scholar 

Wilkinson, T. M. et al. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat. Med. 18, 274–280 (2012).

Article 
PubMed 

Google Scholar 

Sridhar, S. et al. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat. Med. 19, 1305–1312 (2013).

Article 
PubMed 

Google Scholar 

Hayward, A. C. et al. Natural T cell-mediated protection against seasonal and pandemic influenza. results of the Flu Watch cohort study. Am. J. Respir. Crit. Care Med. 191, 1422–1431 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar 

Sridhar, S. Heterosubtypic T-cell immunity to influenza in humans: challenges for universal T-cell influenza vaccines. Front. Immunol. 7, 195 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Coughlan, L. et al. Heterologous two-dose vaccination with simian adenovirus and poxvirus vectors elicits long-lasting cellular immunity to influenza virus A in healthy adults. EBioMedicine 29, 146–154 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Sandbulte, M. R. et al. Discordant antigenic drift of neuraminidase and hemagglutinin in H1N1 and H3N2 influenza viruses. Proc. Natl. Acad. Sci. USA 108, 20748–20753 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar 

Kilbourne, E. D., Johansson, B. E. & Grajower, B. Independent and disparate evolution in nature of influenza A virus hemagglutinin and neuraminidase glycoproteins. Proc. Natl. Acad. Sci. USA 87, 786–790 (1990).

Article 
PubMed 
PubMed Central 

Google Scholar 

Kawai, A. et al. The potential of neuraminidase as an antigen for nasal vaccines to increase cross-protection against influenza viruses. J. Virol. 95, e0118021 (2021).

Article 
PubMed 

Google Scholar 

Wohlbold, T. J. et al. Vaccination with adjuvanted recombinant neuraminidase induces broad heterologous, but not heterosubtypic, cross-protection against influenza virus infection in mice. mBio 6, e02556 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar 

Deroo, T., Jou, W. M. & Fiers, W. Recombinant neuraminidase vaccine protects against lethal influenza. Vaccine 14, 561–569 (1996).

Article 
PubMed 

Google Scholar 

McMahon, M. et al. Mucosal immunity against neuraminidase prevents influenza B virus transmission in guinea pigs. mBio 10 https://doi.org/10.1128/mBio.00560-19 (2019).

McMahon, M. et al. Immunity induced by vaccination with recombinant influenza B virus neuraminidase protein breaks viral transmission chains in guinea pigs in an exposure intensity-dependent manner. J. Virol. 97, e0105723 (2023).

Article 
PubMed 

Google Scholar 

Strohmeier, S. et al. A novel recombinant influenza virus neuraminidase vaccine candidate stabilized by a measles virus phosphoprotein tetramerization domain provides robust protection from virus challenge in the mouse model. mBio 12, e0224121 (2021).

Article 
PubMed 

Google Scholar 

Vatzia, E. et al. Immunization with matrix-, nucleoprotein and neuraminidase protects against H3N2 influenza challenge in pH1N1 pre-exposed pigs. NPJ Vaccines 8, 19 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Judge, E. P. et al. Anatomy and bronchoscopy of the porcine lung. A model for translational respiratory medicine. Am. J. Respir. Cell Mol. Biol. 51, 334–343 (2014).

Article 
PubMed 

Google Scholar 

Rajao, D. S. & Vincent, A. L. Swine as a model for influenza A virus infection and immunity. ILAR J. 56, 44–52 (2015).

Article 
PubMed 

Google Scholar 

Holzer, B., Martini, V., Edmans, M. & Tchilian, E. T and B cell immune responses to influenza viruses in pigs. Front. Immunol. 10, 98 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Pabst, R. The pig as a model for immunology research. Cell Tissue Res. 380, 287–304 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

Walters, E. M., Wells, K. D., Bryda, E. C., Schommer, S. & Prather, R. S. Swine models, genomic tools and services to enhance our understanding of human health and diseases. Lab Animal 46, 167–172 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Anderson, T. K. et al. Swine influenza A viruses and the tangled relationship with humans. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a038737 (2020).

Schwaiger, T. et al. Experimental H1N1pdm09 infection in pigs mimics human seasonal influenza infections. PLoS ONE 14, e0222943 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Halbur, P. G. et al. Comparison of the pathogenicity of two US porcine reproductive and respiratory syndrome virus isolates with that of the Lelystad virus. Vet. Pathol. 32, 648–660 (1995).

Article 
PubMed 

Google Scholar 

Gauger, P. C. et al. Kinetics of lung lesion development and pro-inflammatory cytokine response in pigs with vaccine-associated enhanced respiratory disease induced by challenge with pandemic (2009) A/H1N1 influenza virus. Vet. Pathol. 49, 900–912 (2012).

Article 
PubMed 

Google Scholar 

Martini, V. et al. Distribution of droplets and immune responses after aerosol and intra-nasal delivery of influenza virus to the respiratory tract of pigs. Front. Immunol. 11, 594470 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

Morgan, S. B. et al. Aerosol delivery of a candidate universal influenza vaccine reduces viral load in pigs challenged with pandemic H1N1 virus. J. Immunol. 196, 5014–5023 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Vatzia, E. et al. Respiratory and intramuscular immunization with ChAdOx2-NPM1-NA induces distinct immune responses in H1N1pdm09 pre-exposed pigs. Front. Immunol. 12, 763912 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Nachbagauer, R. et al. A chimeric hemagglutinin-based universal influenza virus vaccine approach induces broad and long-lasting immunity in a randomized, placebo-controlled phase I trial. Nat. Med. 27, 106–114 (2021).

Article 
PubMed 

Google Scholar 

Kanekiyo, M. et al. Mosaic nanoparticle display of diverse influenza virus hemagglutinins elicits broad B cell responses. Nat. Immunol. 20, 362–372 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Nachbagauer, R. & Palese, P. Is a universal influenza virus vaccine possible? Annu. Rev. Med. 71, 315–327 (2020).

Article 
PubMed 

Google Scholar 

Wei, C.-J. et al. Next-generation influenza vaccines: opportunities and challenges. Nat. Rev. Drug Discov. 19, 239–252 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

Zhu, F. et al. Safety and efficacy of the intranasal spray SARS-CoV-2 vaccine dNS1-RBD: a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir. Med. 11, 1075–1088 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Wang, S. Y., Liu, W. Q., Li, Y. Q., Li, J. X. & Zhu, F. C. A China-developed adenovirus vector-based COVID-19 vaccine: review of the development and application of Ad5-nCov. Expert Rev. Vaccines 22, 704–713 (2023).

Article 
PubMed 

Google Scholar 

Huang, T. et al. Safety and immunogenicity of heterologous boosting with orally aerosolised or intramuscular Ad5-nCoV vaccine and homologous boosting with inactivated vaccines (BBIBP-CorV or CoronaVac) in children and adolescents: a randomised, open-label, parallel-controlled, non-inferiority, single-centre study. Lancet Respir. Med. 11, 698–708 (2023).

Article 
PubMed 

Google Scholar 

Cape, S. et al. Safety and immunogenicity of dry powder measles vaccine administered by inhalation: a randomized controlled Phase I clinical trial. Vaccine 32, 6791–6797 (2014).

Article 
PubMed 

Google Scholar 

Low, N. et al. A randomized, controlled trial of an aerosolized vaccine against measles. N. Engl. J. Med. 372, 1519–1529 (2015).

Article 
PubMed 

Google Scholar 

Jegaskanda, S. et al. Induction of H7N9-cross-reactive antibody-dependent cellular cytotoxicity antibodies by human seasonal influenza A viruses that are directed toward the nucleoprotein. J. Infect. Dis. 215, 818–823 (2016).

PubMed Central 

Google Scholar 

Mohn, K. et al. Longevity of B-cell and T-cell responses after live attenuated influenza vaccination in children. J. Infect. Dis. 211 https://doi.org/10.1093/infdis/jiu654 (2014).

Sathaliyawala, T. et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38, 187–197 (2013).

Article 
PubMed 

Google Scholar 

Mohn, K. G. et al. Longevity of B-cell and T-cell responses after live attenuated influenza vaccination in children. J. Infect. Dis. 211, 1541–1549 (2015).

Article 
PubMed 

Google Scholar 

Uddbäck, I. et al. Long-term maintenance of lung resident memory T cells is mediated by persistent antigen. Mucosal Immunol. 14, 92–99 (2021).

Article 
PubMed 

Google Scholar 

Everett, H. E. et al. Vaccines that reduce viral shedding do not prevent transmission of H1N1 pandemic 2009 swine influenza A virus infection to unvaccinated pigs. J. Virol. 95 https://doi.org/10.1128/jvi.01787-20 (2021).

Zheng, M., Luo, J. & Chen, Z. Development of universal influenza vaccines based on influenza virus M and NP genes. Infection 42, 251–262 (2014).

Article 
PubMed 

Google Scholar 

Chen, Q. et al. Comparing the ability of a series of viral protein-expressing plasmid DNAs to protect against H5N1 influenza virus. Virus Genes 38, 30–38 (2009).

Article 
PubMed 

Google Scholar 

Okuda, K. et al. Protective immunity against influenza A virus induced by immunization with DNA plasmid containing influenza M gene. Vaccine 19, 3681–3691 (2001).

Article 
PubMed 

Google Scholar 

Townsend, A. R. et al. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 44, 959–968 (1986).

Article 
PubMed 

Google Scholar 

Yewdell, J. W., Bennink, J. R., Smith, G. L. & Moss, B. Influenza A virus nucleoprotein is a major target antigen for cross-reactive anti-influenza A virus cytotoxic T lymphocytes. Proc. Natl. Acad. Sci. USA 82, 1785–1789 (1985).

Article 
PubMed 
PubMed Central 

Google Scholar 

Misplon, J. A., Lo, C. Y., Crabbs, T. A., Price, G. E. & Epstein, S. L. Adenoviral-vectored universal influenza vaccines administered intranasally reduce lung inflammatory responses upon viral challenge 15 months post-vaccination. J. Virol. 97, e0067423 (2023).

Article 
PubMed 

Google Scholar 

Lo, C. Y. et al. Comparison of vaccines for induction of heterosubtypic immunity to influenza A virus: cold-adapted vaccine versus DNA prime-adenovirus boost strategies. Vaccine 26, 2062–2072 (2008).

Article 
PubMed 

Google Scholar 

Guo, L. et al. Protection against multiple influenza A virus subtypes by intranasal administration of recombinant nucleoprotein. Arch. Virol. 155, 1765–1775 (2010).

Article 
PubMed 

Google Scholar 

Ye, Z. P., Baylor, N. W. & Wagner, R. R. Transcription-inhibition and RNA-binding domains of influenza A virus matrix protein mapped with anti-idiotypic antibodies and synthetic peptides. J. Virol. 63, 3586–3594 (1989).

Article 
PubMed 
PubMed Central 

Google Scholar 

Adler, S., Reay, P., Roy, P. & Klenk, H. D. Induction of T cell response by bluetongue virus core-like particles expressing a T cell epitope of the M1 protein of influenza A virus. Med. Microbiol. Immunol. 187, 91–96 (1998).

Article 
PubMed 

Google Scholar 

Plotnicky, H. et al. The immunodominant influenza matrix T cell epitope recognized in human induces influenza protection in HLA-A2/K(b) transgenic mice. Virology 309, 320–329 (2003).

Article 
PubMed 

Google Scholar 

Lee, L. Y. et al. Memory T cells established by seasonal human influenza A infection cross-react with avian influenza A (H5N1) in healthy individuals. J Clin Investig. 118, 3478–3490 (2008).

PubMed 
PubMed Central 

Google Scholar 

Schmidt, A. et al. Effect of mucosal adjuvant IL-1β on heterotypic immunity in a pig influenza model. Front. Immunol. 14, 1181716 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Holzer, B. et al. Comparison of heterosubtypic protection in ferrets and pigs induced by a single-cycle influenza vaccine. J. Immunol. 200, 4068–4077 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Lapuente, D. et al. IL-1β as mucosal vaccine adjuvant: the specific induction of tissue-resident memory T cells improves the heterosubtypic immunity against influenza A viruses. Mucosal Immunol. 11, 1265–1278 (2018).

Article 
PubMed 

Google Scholar 

Heinen, P. P., Rijsewijk, F. A., de Boer-Luijtze, E. A. & Bianchi, A. T. Vaccination of pigs with a DNA construct expressing an influenza virus M2-nucleoprotein fusion protein exacerbates disease after challenge with influenza A virus. J. Gen. Virol. 83, 1851–1859 (2002).

Article 
PubMed 

Google Scholar 

Hillaire, M. L., Rimmelzwaan, G. F. & Kreijtz, J. H. Clearance of influenza virus infections by T cells: risk of collateral damage? Curr. Opin. Virol. 3, 430–437 (2013).

Article 
PubMed 

Google Scholar 

Duan, S. & Thomas, P. G. Balancing immune protection and immune pathology by CD8(+) T-cell responses to influenza infection. Front. Immunol. 7, 25 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Wells, M. A., Albrecht, P. & Ennis, F. A. Recovery from a viral respiratory infection. I. Influenza pneumonia in normal and T-deficient mice. J. Immunol. 126, 1036–1041 (1981).

Article 
PubMed 

Google Scholar 

Morris, S. J., Sebastian, S., Spencer, A. J. & Gilbert, S. C. Simian adenoviruses as vaccine vectors. Future Virol. 11, 649–659 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleCrunch Fitness provides assistance to Hurricane Milton victims
Next Article Lions vs. Cowboys live updates, scores: Detroit beats Dallas, but Aidan Hutchinson is injured
Paul E.
  • Website

Related Posts

Kentucky leaders emphasize whooping cough vaccination

October 31, 2024

Safety, efficacy and immunogenicity of aerosolized Ad5-nCoV COVID-19 vaccine in a non-inferiority randomized controlled trial

October 31, 2024

Trust is important, but increasing vaccination rates also requires three things

October 31, 2024
Leave A Reply Cancel Reply

Latest Posts

Health Canada approves Novartis’ KISQALI® for HR+/HER2- early breast cancer patients at high risk of recurrence

Sheriff, county lawyer seeking mental health funds at Minnesota State Capitol

Chronic absences have not disappeared. Research shows that poor children are most hurt.

Transport Secretary reveals overhaul of aging pneumatic transport systems

Latest Posts

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Welcome to Subjectional!

At Subjectional, we believe that informed opinions are the foundation of a vibrant society. Our mission is to provide insightful, engaging, and balanced information across a diverse range of topics that matter to you. Whether you’re interested in the latest developments in health, navigating the complexities of politics, staying updated on sports, exploring technological advancements, or advancing your career, we’ve got you covered.

Facebook X (Twitter) Instagram Pinterest YouTube

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Facebook X (Twitter) Instagram Pinterest
  • Home
  • About Us
  • Advertise with Us
  • Contact us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 subjectional. Designed by subjectional.

Type above and press Enter to search. Press Esc to cancel.