Close Menu
  • Home
  • Vaccines
  • Politics
  • Health
  • Tech
  • Sports
  • Research
  • Fitness
  • Careers
What's Hot

Health Canada approves Novartis’ KISQALI® for HR+/HER2- early breast cancer patients at high risk of recurrence

Sheriff, county lawyer seeking mental health funds at Minnesota State Capitol

Chronic absences have not disappeared. Research shows that poor children are most hurt.

Facebook X (Twitter) Instagram
subjectional.com
Subscribe
  • Home
  • Vaccines
  • Politics
  • Health
  • Tech
  • Sports
  • Research
  • Fitness
  • Careers
subjectional.com
Home » Bibliometric analysis of the inflammation expression after spinal cord injury: current research status and emerging frontiers
Research

Bibliometric analysis of the inflammation expression after spinal cord injury: current research status and emerging frontiers

Paul E.By Paul E.October 3, 2024No Comments14 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Qu QR, Tang LY, Liu Q, Long YY, Wu X, Xu M, et al. Proteomic Analysis of the Sphincter in a Neurogenic Bladder Caused by T10 Spinal Cord Injury. J Integr Neurosci. 2022;21:147.

PubMed 

Google Scholar 

Li JA, Shi MP, Cong L, Gu MY, Chen YH, Wang SY, et al. Circulating exosomal lncRNA contributes to the pathogenesis of spinal cord injury in rats. Neural Regen Res. 2023;18:889–94.

CAS 
PubMed 

Google Scholar 

García-Rudolph A, Wright MA, Devilleneuve EA, Castillo E, Opisso E, Hernandez-Pena E. Pressure ulcers acquired during inpatient rehabilitation after spinal cord injury, characterization and predictors: A 15-years’ experience. NeuroRehabilitation. 2024;54:457–72.

PubMed 

Google Scholar 

Cowan H, Lakra C, Desai M. Autonomic dysreflexia in spinal cord injury. BMJ. 2020;371:m3596.

PubMed 

Google Scholar 

Chen YC, Kuo HC. Risk factors of video urodynamics and bladder management for long-term complications in patients with chronic spinal cord injury. Sci Rep. 2024;14:12632.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Kumar R, Lim J, Mekary RA, Rattani A, Dewan MC, Sharif SY, et al. Traumatic Spinal Injury: Global Epidemiology and Worldwide Volume. World Neurosurg. 2018;113:e345–e363.

PubMed 

Google Scholar 

Aschauer-Wallner S, Leis S, Bogdahn U, Johannesen S, Couillard-Despres S, Aigner L. Granulocyte colony-stimulating factor in traumatic spinal cord injury. Drug Discov Today. 2021;26:1642–55.

CAS 
PubMed 

Google Scholar 

Jiang B, Sun D, Sun H, Ru X, Liu H, Ge S, et al. Prevalence, Incidence, and External Causes of Traumatic Spinal Cord Injury in China: A Nationally Representative Cross-Sectional Survey. Front Neurol. 2021;12:784647.

PubMed 

Google Scholar 

Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:459–80.

Freyermuth-Trujillo X, Segura-Uribe JJ, Salgado-Ceballos H, Orozco-Barrios CE, Coyoy-Salgado A. Inflammation: A Target for Treatment in Spinal Cord Injury. Cells. 2022;11:2692.

De la Garza Ramos R, Nakhla J, Nasser R, Jada A, Sciubba DM, Kinon MD, et al. The Impact of Hospital Teaching Status on Timing of Intervention, Inpatient Morbidity, and Mortality After Surgery for Vertebral Column Fractures with Spinal Cord Injury. World Neurosurg. 2017;99:140–4.

PubMed 

Google Scholar 

Xu B, Fang J, Wang J, Jin X, Liu S, Song K, et al. Inhibition of autophagy and RIP1/RIP3/MLKL-mediated necroptosis by edaravone attenuates blood spinal cord barrier disruption following spinal cord injury. Biomed Pharmacother. 2023;165:115165.

CAS 
PubMed 

Google Scholar 

Seblani M, Decherchi P, Brezun JM. Edema after CNS Trauma: A Focus on Spinal Cord Injury. Int J Mol Sci. 2023;24:7159.

Ma D, Shen H, Chen F, Liu W, Zhao Y, Xiao Z, et al. Inflammatory Microenvironment-Responsive Nanomaterials Promote Spinal Cord Injury Repair by Targeting IRF5. Adv Health Mater. 2022;11:e2201319.

Google Scholar 

Xiao S, Zhang Y, Liu Z, Li A, Tong W, Xiong X, et al. Alpinetin inhibits neuroinflammation and neuronal apoptosis via targeting the JAK2/STAT3 signaling pathway in spinal cord injury. CNS Neurosci Ther. 2023;29:1094–108.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Clifford T, Finkel Z, Rodriguez B, Joseph A, Cai L. Current Advancements in Spinal Cord Injury Research-Glial Scar Formation and Neural Regeneration. Cells. 2023;12:853.

Lu Q, Botchway BOA, Zhang Y, Jin T, Liu X. SARM1 can be a potential therapeutic target for spinal cord injury. Cell Mol Life Sci. 2022;79:161.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Zhou X, Wahane S, Friedl MS, Kluge M, Friedel CC, Avrampou K, et al. Microglia and macrophages promote corralling, wound compaction and recovery after spinal cord injury via Plexin-B2. Nat Neurosci. 2020;23:337–50.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Feng Y, Peng Y, Jie J, Yang Y, Yang P. The immune microenvironment and tissue engineering strategies for spinal cord regeneration. Front Cell Neurosci. 2022;16:969002.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Jin LY, Li J, Wang KF, Xia WW, Zhu ZQ, Wang CR, et al. Blood-Spinal Cord Barrier in Spinal Cord Injury: A Review. J Neurotrauma. 2021;38:1203–24.

PubMed 

Google Scholar 

Li W, Zhao X, Zhang R, Liu X, Qi Z, Zhang Y, et al. Ferroptosis inhibition protects vascular endothelial cells and maintains integrity of the blood-spinal cord barrier after spinal cord injury. Neural Regen Res. 2023;18:2474–81.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Bretheau F, Castellanos-Molina A, Bélanger D, Kusik M, Mailhot B, Boisvert A, et al. The alarmin interleukin-1α triggers secondary degeneration through reactive astrocytes and endothelium after spinal cord injury. Nat Commun. 2022;13:5786.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Hirsch JE. Does the H index have predictive power? Proc Natl Acad Sci USA. 2007;104:19193–8.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Earnhardt JN, Streit WJ, Anderson DK, O’Steen WA, Nick HS. Induction of manganese superoxide dismutase in acute spinal cord injury. J Neurotrauma. 2002;19:1065–79.

CAS 
PubMed 

Google Scholar 

Hu Q, Li Y, Lin Z, Zhang H, Chen H, Chao C, et al. The Molecular Biological Mechanism of Hydrogen Therapy and Its Application in Spinal Cord Injury. Drug Des Devel Ther. 2024;18:1399–414.

PubMed 
PubMed Central 

Google Scholar 

Loane DJ, Byrnes KR. Role of microglia in neurotrauma. Neurotherapeutics. 2010;7:366–77.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Donnelly DJ, Longbrake EE, Shawler TM, Kigerl KA, Lai W, Tovar CA, et al. Deficient CX3CR1 signaling promotes recovery after mouse spinal cord injury by limiting the recruitment and activation of Ly6Clo/iNOS+ macrophages. J Neurosci. 2011;31:9910–22.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Li Y, Lei Z, Ritzel RM, He J, Li H, Choi HMC, et al. Impairment of autophagy after spinal cord injury potentiates neuroinflammation and motor function deficit in mice. Theranostics. 2022;12:5364–88.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Tang S, Botchway BOA, Zhang Y, Wang X, Huang M, Liu X. Resveratrol can improve spinal cord injury by activating Nrf2/HO-1 signaling pathway. Ann Anat. 2024;251:152180.

PubMed 

Google Scholar 

Xie DM, Sun C, Tu Q, Li S, Zhang Y, Mei X, et al. Modified black phosphorus quantum dots promotes spinal cord injury repair by targeting the AKT signaling pathway. J Tissue Eng. 2023;14:20417314231180033.

PubMed 
PubMed Central 

Google Scholar 

Schmidt J, Quintá HR. Mitochondrial dysfunction as a target in spinal cord injury: intimate correlation between pathological processes and therapeutic approaches. Neural Regen Res. 2023;18:2161–6.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Yin Z, Wan B, Gong G, Yin J. ROS: Executioner of regulating cell death in spinal cord injury. Front Immunol. 2024;15:1330678.

Guo XD, He XG, Yang FG, Liu MQ, Wang YD, Zhu DX, et al. Research progress on the regulatory role of microRNAs in spinal cord injury. Regen Med. 2021;16:465–76.

CAS 
PubMed 

Google Scholar 

Zhang C, Kang J, Zhang X, Zhang Y, Huang N, Ning B. Spatiotemporal dynamics of the cellular components involved in glial scar formation following spinal cord injury. Biomed Pharmacother. 2022;153:113500.

CAS 
PubMed 

Google Scholar 

Kuhn S, Gritti L, Crooks D, Dombrowski Y. Oligodendrocytes in Development, Myelin Generation and Beyond. Cells. 2019;8:1424.

Shang Z, Shi W, Fu H, Zhang Y, Yu T. Identification of key autophagy-related genes and pathways in spinal cord injury. Sci Rep. 2024;14:6553.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Liao H-Y, Wang Z-Q, Ran R, Zhou K-S, Ma C-W, Zhang H-H. Biological Functions and Therapeutic Potential of Autophagy in Spinal Cord Injury. Front Cell Dev Biol. 2021;9:761273.

Feng J, Zhang Y, Zhu Z, Gu C, Waqas A, Chen L. Emerging Exosomes and Exosomal MiRNAs in Spinal Cord Injury. Front Cell Dev Biol. 2021;9:703989.

Singh N, Guha L, Kumar H. From hope to healing: Exploring the therapeutic potential of exosomes in spinal cord injury. Extracell Vesicle. 2024;3:100044.

Google Scholar 

Hirsch JE. An index to quantify an individual’s scientific research output. Proc Natl Acad Sci USA. 2005;102:16569–72.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Detloff MR, Fisher LC, McGaughy V, Longbrake EE, Popovich PG, Basso DM. Remote activation of microglia and pro-inflammatory cytokines predict the onset and severity of below-level neuropathic pain after spinal cord injury in rats. Exp Neurol. 2008;212:337–47.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Fouad K, Popovich PG, Kopp MA, Schwab JM. The neuroanatomical-functional paradox in spinal cord injury. Nat Rev Neurol. 2021;17:53–62.

PubMed 

Google Scholar 

Huang X, Cao Z, Qian J, Ding T, Wu Y, Zhang H, et al. Nanoreceptors promote mutant p53 protein degradation by mimicking selective autophagy receptors. Nat Nanotechnol. 2024;19:545–53.

CAS 
PubMed 

Google Scholar 

Cohen M, Ben-Yehuda H, Porat Z, Raposo C, Gordon S, Schwartz M. Newly Formed Endothelial Cells Regulate Myeloid Cell Activity Following Spinal Cord Injury via Expression of CD200 Ligand. J Neurosci. 2017;37:972–85.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Slater PG, Domínguez-Romero ME, Villarreal M, Eisner V, Larraín J. Mitochondrial function in spinal cord injury and regeneration. Cell Mol Life Sci. 2022;79:239.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Fatima G, Sharma VP, Das SK, Mahdi AA. Oxidative stress and antioxidative parameters in patients with spinal cord injury: implications in the pathogenesis of disease. Spinal Cord. 2015;53:3–6.

CAS 
PubMed 

Google Scholar 

Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA, et al. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother. 2015;74:101–10.

CAS 
PubMed 

Google Scholar 

Yang H, Zhang W, Pan H, Feldser HG, Lainez E, Miller C, et al. SIRT1 activators suppress inflammatory responses through promotion of p65 deacetylation and inhibition of NF-κB activity. PLoS One. 2012;7:e46364.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Brennan AM, Suh SW, Won SJ, Narasimhan P, Kauppinen TM, Lee H, et al. NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat Neurosci. 2009;12:857–63.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Zhang L, Wang H, Zhou X, Mao L, Ding K, Hu Z. Role of mitochondrial calcium uniporter-mediated Ca(2+) and iron accumulation in traumatic brain injury. J Cell Mol Med. 2019;23:2995–3009.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Hu X, Xu Y, Xu H, Jin C, Zhang H, Su H, et al. Progress in Understanding Ferroptosis and Its Targeting for Therapeutic Benefits in Traumatic Brain and Spinal Cord Injuries. Front Cell Dev Biol. 2021;9:705786.

PubMed 
PubMed Central 

Google Scholar 

Liu D, Liu J, Sun D, Wen J. The time course of hydroxyl radical formation following spinal cord injury: the possible role of the iron-catalyzed Haber-Weiss reaction. J Neurotrauma. 2004;21:805–16.

PubMed 

Google Scholar 

Taoka Y, Naruo M, Koyanagi E, Urakado M, Inoue M. Superoxide radicals play important roles in the pathogenesis of spinal cord injury. Paraplegia. 1995;33:450–3.

CAS 
PubMed 

Google Scholar 

Coyoy-Salgado A, Segura-Uribe JJ, Guerra-Araiza C, Orozco-Suárez S, Salgado-Ceballos H, Feria-Romero IA, et al. The Importance of Natural Antioxidants in the Treatment of Spinal Cord Injury in Animal Models: An Overview. Oxid Med Cell Longev. 2019;2019:3642491.

PubMed 
PubMed Central 

Google Scholar 

Zhang B, Bailey WM, McVicar AL, Gensel JC. Age increases reactive oxygen species production in macrophages and potentiates oxidative damage after spinal cord injury. Neurobiol Aging. 2016;47:157–67.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Miao X, Lin J, Zheng X. Advances of the role of mitochondrial dysfunction in the spinal cord injury and its relevant treatments. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2022;36:902–7.

PubMed 

Google Scholar 

Hall ED. Antioxidant therapies for acute spinal cord injury. Neurotherapeutics. 2011;8:152–67.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Zhang C, Talifu Z, Xu X, Liu W, Ke H, Pan Y, et al. MicroRNAs in spinal cord injury: A narrative review. Front Mol Neurosci. 2023;16:1099256.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Zhu Y, Xu Q, Sha WP, Zhao KP, Wang LM. MiR-219-5p promotes spinal cord injury recovery by inhibiting NEUROD2-regulated inflammation and oxidative stress. Eur Rev Med Pharm Sci. 2019;23:37–43.

CAS 

Google Scholar 

Wang R, Liu Y, Jing L. MiRNA-99a alleviates inflammation and oxidative stress in lipopolysaccharide-stimulated PC-12 cells and rats post spinal cord injury. Bioengineered. 2022;13:4248–59.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Ding LZ, Xu J, Yuan C, Teng X, Wu QM. MiR-7a ameliorates spinal cord injury by inhibiting neuronal apoptosis and oxidative stress. Eur Rev Med Pharm Sci. 2020;24:11–7.

Google Scholar 

Jiang Y, Rong H, Wang Y, Liu S, Xu P, Luo Z, et al. Single-atom cobalt nanozymes promote spinal cord injury recovery by anti-oxidation and neuroprotection. Nano Res. 2023;16:9752–9.

CAS 

Google Scholar 

Li Y, Guo Y, Fan Y, Tian H, Li K, Mei X. Melatonin Enhances Autophagy and Reduces Apoptosis to Promote Locomotor Recovery in Spinal Cord Injury via the PI3K/AKT/mTOR Signaling Pathway. Neurochem Res. 2019;44:2007–19.

CAS 
PubMed 

Google Scholar 

Zhang Y, Zhang W-X, Zhang Y-J, Liu Y-D, Liu Z-J, Wu Q-C, et al. Melatonin for the treatment of spinal cord injury. Neural Regen Res. 2018;13:1685–92.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Wang H, Wang H, Huang H, Qu Z, Ma D, Dang X, et al. Melatonin Attenuates Spinal Cord Injury in Mice by Activating the Nrf2/ARE Signaling Pathway to Inhibit the NLRP3 Inflammasome. Cells. 2022;11:2809.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Bellver-Landete V, Bretheau F, Mailhot B, Vallières N, Lessard M, Janelle ME, et al. Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nat Commun. 2019;10:518.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Pearson CS, Mencio CP, Barber AC, Martin KR, Geller HM. Identification of a critical sulfation in chondroitin that inhibits axonal regeneration. eLife 2018;7:e37139.

PubMed 
PubMed Central 

Google Scholar 

Wanner IB, Anderson MA, Song B, Levine J, Fernandez A, Gray-Thompson Z, et al. Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci. 2013;33:12870–86.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Brennan FH, Li Y, Wang C, Ma A, Guo Q, Li Y, et al. Microglia coordinate cellular interactions during spinal cord repair in mice. Nat Commun. 2022;13:4096.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Hackett AR, Lee JK. Understanding the NG2 Glial Scar after Spinal Cord Injury. Front Neurol. 2016;7:199.

PubMed 
PubMed Central 

Google Scholar 

Ageeva T, Rizvanov A, Mukhamedshina Y. NF-κB and JAK/STAT Signaling Pathways as Crucial Regulators of Neuroinflammation and Astrocyte Modulation in Spinal Cord Injury. Cells. 2024;13:581.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Lee JY, Park CS, Seo KJ, Kim IY, Han S, Youn I, et al. IL-6/JAK2/STAT3 axis mediates neuropathic pain by regulating astrocyte and microglia activation after spinal cord injury. Exp Neurol. 2023;370:114576.

CAS 
PubMed 

Google Scholar 

Sun X, Liu H, Tan Z, Hou Y, Pang M, Chen S, et al. Remodeling Microenvironment for Endogenous Repair through Precise Modulation of Chondroitin Sulfate Proteoglycans Following Spinal Cord Injury. Small. 2023;19:e2205012.

PubMed 

Google Scholar 

Chen T, He X, Wang J, Du D, Xu Y. NT-3 Combined with TGF-β Signaling Pathway Enhance the Repair of Spinal Cord Injury by Inhibiting Glial Scar Formation and Promoting Axonal Regeneration. Mol Biotechnol. 2024;66:1484–95.

CAS 
PubMed 

Google Scholar 

Inoue M, Yamaguchi R, He CCJ, Ikeda A, Okano H, Kohyama J. Current status and prospects of regenerative medicine for spinal cord injury using human induced pluripotent stem cells: a review. Stem Cell Investig. 2023;10:6.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Gong W, Zhang T, Che M, Wang Y, He C, Liu L, et al. Recent advances in nanomaterials for the treatment of spinal cord injury. Mater Today Bio. 2023;18:100524.

CAS 
PubMed 

Google Scholar 

Xiong T, Yang K, Zhao T, Zhao H, Gao X, You Z, et al. Multifunctional Integrated Nanozymes Facilitate Spinal Cord Regeneration by Remodeling the Extrinsic Neural Environment. Adv Sci. 2023;10:e2205997.

Google Scholar 

Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol. 2009;10:458–67.

CAS 
PubMed 

Google Scholar 

Takeshige K, Baba M, Tsuboi S, Noda T, Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol. 1992;119:301–11.

CAS 
PubMed 

Google Scholar 

Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, et al. A protein conjugation system essential for autophagy. Nature. 1998;395:395–8.

CAS 
PubMed 

Google Scholar 

Yamamoto H, Matsui T. Molecular Mechanisms of Macroautophagy, Microautophagy, and Chaperone-Mediated Autophagy. J Nippon Med Sch. 2024;91:2–9.

CAS 
PubMed 

Google Scholar 

Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 2018;19:349–64.

CAS 
PubMed 

Google Scholar 

Gao Y, Zorman S, Gundersen G, Xi Z, Ma L, Sirinakis G, et al. Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science. 2012;337:1340–3.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Kim J, Kleizen B, Choy R, Thinakaran G, Sisodia SS, Schekman RW. Biogenesis of gamma-secretase early in the secretory pathway. J Cell Biol. 2007;179:951–63.

CAS 
PubMed 
PubMed Central 

Google Scholar 

Südhof TC, Rothman JE. Membrane fusion: grappling with SNARE and SM proteins. Science. 2009;323:474–7.

PubMed 
PubMed Central 

Google Scholar 

Wang T, Huang G, Yi Z, Dai S, Zhuang W, Guo S. Advances in extracellular vesicle-based combination therapies for spinal cord injury. Neural Regen Res. 2024;19:369–74.

CAS 
PubMed 

Google Scholar 

Luo C, Tao L. The Function and Mechanisms of Autophagy in Spinal Cord Injury. Adv Exp Med Biol. 2020;1207:649–54.

CAS 
PubMed 

Google Scholar 

Zhang C, Li D, Hu H, Wang Z, An J, Gao Z, et al. Engineered extracellular vesicles derived from primary M2 macrophages with anti-inflammatory and neuroprotective properties for the treatment of spinal cord injury. J Nanobiotechnol. 2021;19:373.

CAS 

Google Scholar 



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleArvada welcomes career development nonprofit to Colorado community
Next Article Porto vs Man United: preview, predictions, line-up
Paul E.
  • Website

Related Posts

Chronic absences have not disappeared. Research shows that poor children are most hurt.

June 5, 2025

American Brain Tumor Society’s Metastatic Brain Tumor Collaborative Announces $50,000 Research Grant Opportunity to Fund High-Risk, High-Impact CNS Metastasis Research

October 31, 2024

Massive yard sale in Newtown benefits pancreatic cancer research

October 31, 2024
Leave A Reply Cancel Reply

Latest Posts

Health Canada approves Novartis’ KISQALI® for HR+/HER2- early breast cancer patients at high risk of recurrence

Sheriff, county lawyer seeking mental health funds at Minnesota State Capitol

Chronic absences have not disappeared. Research shows that poor children are most hurt.

Transport Secretary reveals overhaul of aging pneumatic transport systems

Latest Posts

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Welcome to Subjectional!

At Subjectional, we believe that informed opinions are the foundation of a vibrant society. Our mission is to provide insightful, engaging, and balanced information across a diverse range of topics that matter to you. Whether you’re interested in the latest developments in health, navigating the complexities of politics, staying updated on sports, exploring technological advancements, or advancing your career, we’ve got you covered.

Facebook X (Twitter) Instagram Pinterest YouTube

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Facebook X (Twitter) Instagram Pinterest
  • Home
  • About Us
  • Advertise with Us
  • Contact us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 subjectional. Designed by subjectional.

Type above and press Enter to search. Press Esc to cancel.