Close Menu
  • Home
  • Vaccines
  • Politics
  • Health
  • Tech
  • Sports
  • Research
  • Fitness
  • Careers
What's Hot

Health Canada approves Novartis’ KISQALI® for HR+/HER2- early breast cancer patients at high risk of recurrence

Sheriff, county lawyer seeking mental health funds at Minnesota State Capitol

Chronic absences have not disappeared. Research shows that poor children are most hurt.

Facebook X (Twitter) Instagram
subjectional.com
Subscribe
  • Home
  • Vaccines
  • Politics
  • Health
  • Tech
  • Sports
  • Research
  • Fitness
  • Careers
subjectional.com
Home » From TCR fundamental research to innovative chimeric antigen receptor design
Research

From TCR fundamental research to innovative chimeric antigen receptor design

Paul E.By Paul E.October 21, 2024No Comments24 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Dong, D. et al. Structural basis of assembly of the human T cell receptor–CD3 complex. Nature 573, 546–552 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Chen, Y. et al. Cholesterol inhibits TCR signaling by directly restricting TCR–CD3 core tunnel motility. Mol. Cell 82, 1278–1287.e5 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Reth, M. Antigen receptor tail clue. Nature 338, 383–384 (1989).

Article 
CAS 
PubMed 

Google Scholar 

Love, P. E. & Hayes, S. M. ITAM-mediated signaling by the T-cell antigen receptor. Cold Spring Harb. Persp. Biol. 2, a002485 (2010).

Google Scholar 

Pitcher, L. A. & van Oers, N. S. C. T-cell receptor signal transmission: who gives an ITAM? Trends Immunol. 24, 554–560 (2003).

Article 
CAS 
PubMed 

Google Scholar 

Letourneur, F. & Klausner, R. D. T-cell and basophil activation through the cytoplasmic tail of T-cell-receptor ζ family proteins. Proc. Natl Acad. Sci. USA 88, 8905–8909 (1991).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Irving, B. A. & Weiss, A. The cytoplasmic domain of the T cell receptor ζ chain is sufficient to couple to receptor-associated signal transduction pathways. Cell 64, 891–901 (1991).

Article 
CAS 
PubMed 

Google Scholar 

Romeo, C. & Seed, B. Cellular immunity to HIV activated by CD4 fused to T cell or Fc receptor polypeptides. Cell 64, 1037–1046 (1991).

Article 
CAS 
PubMed 

Google Scholar 

Rafiq, S., Hackett, C. S. & Brentjens, R. J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 17, 147–167 (2020).

Article 
PubMed 

Google Scholar 

Majzner, R. G. et al. GD2–CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature 603, 934–941 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Huang, J., Huang, X. & Huang, J. CAR-T cell therapy for hematological malignancies: limitations and optimization strategies. Front. Immunol. 13, 1019115 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Morris, E. C., Neelapu, S. S., Giavridis, T. & Sadelain, M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat. Rev. Immunol. 22, 85–96 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Swamy, M. et al. A cholesterol-based allostery model of T cell receptor phosphorylation. Immunity 44, 1091–1101 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Courtney, A. H., Lo, W. L. & Weiss, A. TCR signaling: mechanisms of initiation and propagation. Trends Biochem. Sci. 43, 108–123 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Aivazian, D. & Stern, L. J. Phosphorylation of T cell receptor ζ is regulated by a lipid dependent folding transition. Nat. Struct. Biol. 7, 1023–1026 (2000).

Article 
CAS 
PubMed 

Google Scholar 

Zhang, H., Cordoba, S.-P., Dushek, O. & van der Merwe, P. A. Basic residues in the T-cell receptor ζ cytoplasmic domain mediate membrane association and modulate signaling. Proc. Natl Acad. Sci. USA 108, 19323–19328 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Xu, C. et al. Regulation of T cell receptor activation by dynamic membrane binding of the CD3ε cytoplasmic tyrosine-based motif. Cell 135, 702–713 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Li, L. et al. Ionic CD3–Lck interaction regulates the initiation of T-cell receptor signaling. Proc. Natl Acad. Sci. USA 114, E5891–E5899 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Wu, W. et al. Multiple signaling roles of CD3ε and its application in CAR-T cell therapy. Cell 182, 855–871.e23 (2020).

Article 
CAS 
PubMed 

Google Scholar 

von Essen, M. et al. The CD3 γ leucine-based receptor-sorting motif is required for efficient ligand-mediated TCR down-regulation. J. Immunol. 168, 4519–4523 (2002).

Article 

Google Scholar 

Janeway, C. A. Ligands for the T-cell receptor: hard times for avidity models. Immunol. Today 16, 223–225 (1995).

Article 
CAS 
PubMed 

Google Scholar 

Lever, M., Maini, P. K., van der Merwe, P. A. & Dushek, O. Phenotypic models of T cell activation. Nat. Rev. Immunol. 14, 619–629 (2014).

Article 
CAS 
PubMed 

Google Scholar 

Schamel, W. W., Alarcon, B. & Minguet, S. The TCR is an allosterically regulated macromolecular machinery changing its conformation while working. Immunol. Rev. 291, 8–25 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Minguet, S., Swamy, M., Alarcón, B., Luescher, I. F. & Schamel, W. W. A. Full activation of the T cell receptor requires both clustering and conformational changes at CD3. Immunity 26, 43–54 (2007).

Article 
CAS 
PubMed 

Google Scholar 

Cochran, J. R., Cameron, T. O. & Stern, L. J. The relationship of MHC-peptide binding and T cell activation probed using chemically defined MHC class II oligomers. Immunity 12, 241–250 (2000).

Article 
CAS 
PubMed 

Google Scholar 

Boniface, J. J. et al. Initiation of signal transduction through the T cell receptor requires the multivalent engagement of peptide/MHC ligands (corrected). Immunity 9, 459–466 (1998).

Article 
CAS 
PubMed 

Google Scholar 

Davis, S. J. & van der Merwe, P. A. The kinetic-segregation model: TCR triggering and beyond. Nat. Immunol. 7, 803–809 (2006).

Article 
CAS 
PubMed 

Google Scholar 

Springer, T. A. Adhesion receptors of the immune system. Nature 346, 425–434 (1990).

Article 
CAS 
PubMed 

Google Scholar 

Cordoba, S.-P. et al. The large ectodomains of CD45 and CD148 regulate their segregation from and inhibition of ligated T-cell receptor. Blood 121, 4295–4302 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Jung, Y., Wen, L., Altman, A. & Ley, K. CD45 pre-exclusion from the tips of T cell microvilli prior to antigen recognition. Nat. Commun. 12, 3872 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Acuto, O. T-cell virtuosity in “knowing thyself”. Front. Immunol. 15, 1343575 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hartl, F. A. et al. Noncanonical binding of Lck to CD3ε promotes TCR signaling and CAR function. Nat. Immunol. 21, 902–913 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Gil, D., Schamel, W. W. A., Montoya, M., Sánchez-Madrid, F. & Alarcón, B. Recruitment of Nck by CD3ε reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell 109, 901–912 (2002).

Article 
CAS 
PubMed 

Google Scholar 

Blanco, R., Borroto, A., Schamel, W., Pereira, P. & Alarcon, B. Conformational changes in the T cell receptor differentially determine T cell subset development in mice. Sci. Signal. 7, ra115 (2014).

Article 
PubMed 

Google Scholar 

Risueño, R. M., van Santen, H. M. & Alarcón, B. A conformational change senses the strength of T cell receptor–ligand interaction during thymic selection. Proc. Natl Acad. Sci. USA 103, 9625–9630 (2006).

Article 
PubMed 
PubMed Central 

Google Scholar 

Lee, M. S. et al. A mechanical switch couples T cell receptor triggering to the cytoplasmic juxtamembrane regions of CD3ζζ. Immunity 43, 227–239 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Sušac, L. et al. Structure of a fully assembled tumor-specific T cell receptor ligated by pMHC. Cell 185, 3201–3213.e19 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Notti, R. Q. et al. The resting state of the human T-cell receptor. Preprint at bioRxiv https://doi.org/10.1101/2023.08.22.554360 (2023).

van Eerden, F. J. et al. TCR binding to a peptide-MHC complex raises a drawbridge for CD3 cross-membrane signaling. preprint at bioRxiv https://doi.org/10.1101/2022.07.27.501668 (2022).

Molnár, E. et al. Cholesterol and sphingomyelin drive ligand-independent T-cell antigen receptor nanoclustering. J. Biol. Chem. 287, 42664–42674 (2012).

Article 
PubMed 
PubMed Central 

Google Scholar 

Pathan-Chhatbar, S. et al. Direct regulation of the T cell antigen receptor’s activity by cholesterol. Front. Cell Dev. Biol. 8, 615996 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Shi, X. et al. Ca2+ regulates T-cell receptor activation by modulating the charge property of lipids. Nature 493, 111–115 (2013).

Article 
PubMed 

Google Scholar 

Deford-Watts, L. M. et al. The cytoplasmic tail of the T cell receptor CD3ε subunit contains a phospholipid-binding motif that regulates T cell functions. J. Immunol. 183, 1055–1064 (2009).

Article 
CAS 
PubMed 

Google Scholar 

Xu, X., Li, H. & Xu, C. Structural understanding of T cell receptor triggering. Cell. Mol. Immunol. 17, 193–202 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hem, C. D. et al. T cell specific adaptor protein (TSAd) promotes interaction of Nck with Lck and SLP-76 in T cells. Cell. Commun. Signal. 13, 31 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar 

Velasco Cárdenas, R. M.-H. et al. Harnessing CD3 diversity to optimize CAR T cells. Nat. Immunol. 24, 2135–2149 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Horkova, V. et al. Unique roles of co-receptor-bound LCK in helper and cytotoxic T cells. Nat. Immunol. 24, 174–185 (2023).

Article 
CAS 
PubMed 

Google Scholar 

June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Honikel, M. M. & Olejniczak, S. H. Co-stimulatory receptor signaling in CAR-T cells. Biomolecules 12, 1303 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hege, K. M. et al. Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer. J. Immunother. Cancer 5, 22 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Till, B. G. et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 112, 2261–2271 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Brocker, T. Chimeric Fv-ζ or Fv-ε receptors are not sufficient to induce activation or cytokine production in peripheral T cells. Blood 96, 1999–2001 (2000).

Article 
CAS 
PubMed 

Google Scholar 

Asmamaw Dejenie, T. et al. Current updates on generations, approvals, and clinical trials of CAR T-cell therapy. Hum. Vaccin. Immunother. 18, 2114254 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Wang, H., Song, X., Shen, L., Wang, X. & Xu, C. Exploiting T cell signaling to optimize engineered T cell therapies. Trends Cancer 8, 123–134 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Ajina, A. & Maher, J. Strategies to address chimeric antigen receptor tonic signaling. Mol. Cancer Ther. 17, 1795–1815 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Salzer, B. et al. Engineering AvidCARs for combinatorial antigen recognition and reversible control of CAR function. Nat. Commun. 11, 4166 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wang, H., Huang, Y. & Xu, C. Charging CAR by electrostatic power. Immunol. Rev. 320, 138–146 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Nieba, L., Honegger, A., Krebber, C. & Plückthun, A. Disrupting the hydrophobic patches at the antibody variable/constant domain interface: improved in vivo folding and physical characterization of an engineered scFv fragment. Protein Eng. 10, 435–444 (1997).

Article 
CAS 
PubMed 

Google Scholar 

Atwell, J. L. et al. scFv multimers of the anti-neuraminidase antibody NC10: length of the linker between VH and VL domains dictates precisely the transition between diabodies and triabodies. Protein Eng. 12, 597–604 (1999).

Article 
CAS 
PubMed 

Google Scholar 

Choudhuri, K., Wiseman, D., Brown, M. H., Gould, K. & van der Merwe, P. A. T-cell receptor triggering is critically dependent on the dimensions of its peptide-MHC ligand. Nature 436, 578–582 (2005).

Article 
CAS 
PubMed 

Google Scholar 

Srivastava, S. & Riddell, S. R. Engineering CAR-T cells: design concepts. Trends Immunol. 36, 494–502 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Xiao, Q. et al. Size-dependent activation of CAR-T cells. Sci. Immunol. 7, eabl3995 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Filby, A. et al. Fyn regulates the duration of TCR engagement needed for commitment to effector function. J. Immunol. 179, 4635–4644 (2007).

Article 
CAS 
PubMed 

Google Scholar 

Wu, L. et al. CD28–CAR-T cell activation through FYN kinase signaling rather than LCK enhances therapeutic performance. Cell. Rep. Med. 4, 100917 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Purbhoo, M. A., Irvine, D. J., Huppa, J. B. & Davis, M. M. T cell killing does not require the formation of a stable mature immunological synapse. Nat. Immunol. 5, 524–530 (2004).

Article 
CAS 
PubMed 

Google Scholar 

Irvine, D. J., Purbhoo, M. A., Krogsgaard, M. & Davis, M. M. Direct observation of ligand recognition by T cells. Nature 419, 845–849 (2002).

Article 
CAS 
PubMed 

Google Scholar 

Burton, J. et al. Inefficient exploitation of accessory receptors reduces the sensitivity of chimeric antigen receptors. Proc. Natl Acad. Sci. USA 120, e2216352120 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Gudipati, V. et al. Inefficient CAR-proximal signaling blunts antigen sensitivity. Nat. Immunol. 21, 848–856 (2020).

Article 
CAS 
PubMed 

Google Scholar 

James, S. E. et al. Mathematical modeling of chimeric TCR triggering predicts the magnitude of target lysis and its impairment by TCR downmodulation. J. Immunol. 184, 4284–4294 (2010).

Article 
CAS 
PubMed 

Google Scholar 

Harris, D. T. et al. Comparison of T cell activities mediated by human TCRs and CARs that use the same recognition domains. J. Immunol. 200, 1088–1100 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Mansilla-Soto, J. et al. HLA-independent T cell receptors for targeting tumors with low antigen density. Nat. Med. 28, 345–352 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Walker, A. J. et al. Tumor antigen and receptor densities regulate efficacy of a chimeric antigen receptor targeting anaplastic lymphoma kinase. Mol. Ther. 25, 2189–2201 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Salter, A. I. et al. Comparative analysis of TCR and CAR signaling informs CAR designs with superior antigen sensitivity and in vivo function. Sci. Signal. 14, eabe2606 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Harrer, D. C. et al. Fine-tuning the antigen sensitivity of CAR T cells: emerging strategies and current challenges. Front. Immunol. 14, 1321596 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Qian, D., Griswold-Prenner, I., Rosner, M. R. & Fitch, F. W. Multiple components of the T cell antigen receptor complex become tyrosine-phosphorylated upon activation. J. Biol. Chem. 268, 4488–4493 (1993).

Article 
CAS 
PubMed 

Google Scholar 

Baniyash, M., Garcia-Morales, P., Luong, E., Samelson, L. E. & Klausner, R. D. The T cell antigen receptor ζ chain is tyrosine phosphorylated upon activation. J. Biol. Chem. 263, 18225–18230 (1988).

Article 
CAS 
PubMed 

Google Scholar 

Chylek, L. A. et al. Phosphorylation site dynamics of early T-cell receptor signaling. PLoS ONE 9, e104240 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar 

Holst, J. et al. Scalable signaling mediated by T cell antigen receptor-CD3 ITAMs ensures effective negative selection and prevents autoimmunity. Nat. Immunol. 9, 658–666 (2008).

Article 
CAS 
PubMed 

Google Scholar 

Pitcher, L. A. et al. The CD3 γε/δε signaling module provides normal T cell functions in the absence of the TCR ζ immunoreceptor tyrosine-based activation motifs. Eur. J. Immunol. 35, 3643–3654 (2005).

Article 
CAS 
PubMed 

Google Scholar 

Bettini, M. L. et al. Cutting edge: CD3 ITAM diversity is required for optimal TCR signaling and thymocyte development. J. Immunol. 199, 1555–1560 (2017).

Article 
CAS 
PubMed 

Google Scholar 

Osman, N., Turner, H., Lucas, S., Reif, K. & Cantrell, D. A. The protein interactions of the immunoglobulin receptor family tyrosine-based activation motifs present in the T cell receptor ζ subunits and the CD3 γ, δ and ε chains. Eur. J. Immunol. 26, 1063–1068 (1996).

Article 
CAS 
PubMed 

Google Scholar 

Sunder-Plassmann, R., Lialios, F., Madsen, M., Koyasu, S. & Reinherz, E. L. Functional analysis of immunoreceptor tyrosine-based activation motif (ITAM)-mediated signal transduction: the two YxxL segments within a single CD3ζ-ITAM are functionally distinct. Eur. J. Immunol. 27, 2001–2009 (1997).

Article 
CAS 
PubMed 

Google Scholar 

Guirado, M. et al. Phosphorylation of the N-terminal and C-terminal CD3-ε–ITAM tyrosines is differentially regulated in T cells. Biochem. Biophys. Res. Commun. 291, 574–581 (2002).

Article 
CAS 
PubMed 

Google Scholar 

Paensuwan, P. et al. Nck binds to the T cell antigen receptor using its SH3.1 and SH2 domains in a cooperative manner, promoting TCR functioning. J. Immunol. 196, 448–458 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Kesti, T. et al. Reciprocal regulation of SH3 and SH2 domain binding via tyrosine phosphorylation of a common site in CD3ε. J. Immunol. 179, 878–885 (2007).

Article 
CAS 
PubMed 

Google Scholar 

Zhao, Y. et al. A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J. Immunol. 183, 5563–5574 (2009).

Article 
CAS 
PubMed 

Google Scholar 

Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Long, A. H. et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med. 21, 581–590 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

James, J. R. Tuning ITAM multiplicity on T cell receptors can control potency and selectivity to ligand density. Sci. Signal. 11, eaan1088 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Majzner, R. G. et al. Tuning the antigen density requirement for CAR T-cell activity. Cancer Discov. 10, 702–723 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Feucht, J. et al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat. Med. 25, 82–88 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Kochenderfer, J. N., Yu, Z., Frasheri, D., Restifo, N. P. & Rosenberg, S. A. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood 116, 3875–3886 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Guo, X. et al. Lipid-dependent conformational dynamics underlie the functional versatility of T-cell receptor. Cell Res. 27, 505–525 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Gagnon, E., Schubert, D. A., Gordo, S., Chu, H. H. & Wucherpfennig, K. W. Local changes in lipid environment of TCR microclusters regulate membrane binding by the CD3ε cytoplasmic domain. J. Exp. Med. 209, 2423–2439 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Li, H., Yan, C., Guo, J. & Xu, C. Ionic protein–lipid interactions at the plasma membrane regulate the structure and function of immunoreceptors. Adv. Immunol. 144, 65–85 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Baeuerle, P. A. et al. Synthetic TRuC receptors engaging the complete T cell receptor for potent anti-tumor response. Nat. Commun. 10, 2087 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Gomes-Silva, D. et al. Tonic 4-1BB costimulation in chimeric antigen receptors impedes T cell survival and is vector-dependent. Cell. Rep. 21, 17–26 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

DeFord-Watts, L. M., Young, J. A., Pitcher, L. A. & van Oers, N. S. C. The membrane-proximal portion of CD3 ε associates with the serine/threonine kinase GRK2. J. Biol. Chem. 282, 16126–16134 (2007).

Article 
CAS 
PubMed 

Google Scholar 

Dobbins, J. et al. Binding of the cytoplasmic domain of CD28 to the plasma membrane inhibits Lck recruitment and signaling. Sci. Signal. 9, ra75 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Yang, W. et al. Dynamic regulation of CD28 conformation and signaling by charged lipids and ions. Nat. Struct. Mol. Biol. 24, 1081–1092 (2017).

Article 
CAS 
PubMed 

Google Scholar 

Hartl, F. A. et al. Cooperative interaction of nck and lck orchestrates optimal TCR signaling. Cells 10, 834 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Tailor, P. et al. The proline-rich sequence of CD3ε as an amplifier of low-avidity TCR signaling. J. Immunol. 181, 243–255 (2008).

Article 
CAS 
PubMed 

Google Scholar 

Borroto, A. et al. First-in-class inhibitor of the T cell receptor for the treatment of autoimmune diseases. Sci. Transl. Med. 8, 370ra184 (2016).

Article 
PubMed 

Google Scholar 

Borroto, A. et al. Nck recruitment to the TCR required for ZAP70 activation during thymic development. J. Immunol. 190, 1103–1112 (2013).

Article 
CAS 
PubMed 

Google Scholar 

Martin-Blanco, N. et al. CD3ε recruits Numb to promote TCR degradation. Int. Immunol. 28, 127–137 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Mingueneau, M. et al. The proline-rich sequence of CD3ε controls T cell antigen receptor expression on and signaling potency in preselection CD4+CD8+ thymocytes. Nat. Immunol. 9, 522–532 (2008).

Article 
CAS 
PubMed 

Google Scholar 

Borroto, A. et al. Relevance of Nck–CD3ε interaction for T cell activation in vivo. J. Immunol. 192, 2042–2053 (2014).

Article 
CAS 
PubMed 

Google Scholar 

Szymczak, A. L. et al. The CD3ε proline-rich sequence, and its interaction with Nck, is not required for T cell development and function. J. Immunol. 175, 270–275 (2005).

Article 
CAS 
PubMed 

Google Scholar 

Göbel, T. W. & Dangy, J. P. Evidence for a stepwise evolution of the CD3 family. J. Immunol. 164, 879–883 (2000).

Article 
PubMed 

Google Scholar 

Dietrich, J., Hou, X., Wegener, A. M. & Geisler, C. CD3 γ contains a phosphoserine-dependent di-leucine motif involved in down-regulation of the T cell receptor. EMBO J. 13, 2156–2166 (1994).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Boding, L. et al. TCR down-regulation controls T cell homeostasis. J. Immunol. 183, 4994–5005 (2009).

Article 
CAS 
PubMed 

Google Scholar 

Bonefeld, C. M. et al. TCR down-regulation controls virus-specific CD8+ T cell responses. J. Immunol. 181, 7786–7799 (2008).

Article 
CAS 
PubMed 

Google Scholar 

Kolanus, W., Romeo, C. & Seed, B. T cell activation by clustered tyrosine kinases. Cell 74, 171–183 (1993).

Article 
CAS 
PubMed 

Google Scholar 

Fitzer-Attas, C. J., Schindler, D. G., Waks, T. & Eshhar, Z. Harnessing Syk family tyrosine kinases as signaling domains for chimeric single chain of the variable domain receptors: optimal design for T cell activation. J. Immunol. 160, 145–154 (1998).

Article 
CAS 
PubMed 

Google Scholar 

Tousley, A. M. et al. Co-opting signalling molecules enables logic-gated control of CAR T cells. Nature 615, 507–516 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Balagopalan, L. et al. Generation of antitumor chimeric antigen receptors incorporating T cell signaling motifs. Sci. Signal. 17, eadp8569 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Liu, Y. et al. Chimeric STAR receptors using TCR machinery mediate robust responses against solid tumors. Sci. Transl. Med. 13, eabb5191 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Xu, Y. et al. A novel antibody-TCR (AbTCR) platform combines Fab-based antigen recognition with gamma/delta-TCR signaling to facilitate T-cell cytotoxicity with low cytokine release. Cell Discov. 4, 62 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Helsen, C. W. et al. The chimeric TAC receptor co-opts the T cell receptor yielding robust anti-tumor activity without toxicity. Nat. Commun. 9, 3049 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Schamel, W. W. A. et al. Coexistence of multivalent and monovalent TCRs explains high sensitivity and wide range of response. J. Exp. Med. 202, 493–503 (2005).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Minguet, S. et al. The extracellular part of ζ is buried in the T cell antigen receptor complex. Immunol. Lett. 116, 203–210 (2008).

Article 
CAS 
PubMed 

Google Scholar 

Ding, J. et al. Mesothelin-targeting T cells bearing a novel T cell receptor fusion construct (TRuC) exhibit potent antitumor efficacy against solid tumors. Oncoimmunology 12, 2182058 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Rana, J. et al. CAR- and TRuC-redirected regulatory T cells differ in capacity to control adaptive immunity to FVIII. Mol. Ther. 29, 2660–2676 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Sun, Y. et al. Chimeric anti-GPC3 sFv-CD3ε receptor-modified T cells with IL7 co-expression for the treatment of solid tumors. Mol. Ther. Oncolyt. 25, 160–173 (2022).

Article 
CAS 

Google Scholar 

Zhang, Z. et al. Treating solid tumors with TCR-based chimeric antigen receptor targeting extra domain B-containing fibronectin. J. Immunother. Cancer 11, e007199 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Birtel, M. et al. A TCR-like CAR promotes sensitive antigen recognition and controlled T-cell expansion upon mRNA vaccination. Cancer Res. Commun. 2, 827–841 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Chen, Z. et al. Antibody-based binding domain fused to TCRγ chain facilitates T cell cytotoxicity for potent anti-tumor response. Oncogenesis 12, 33 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Lesch, S. et al. PD-1-CD28 fusion protein strengthens mesothelin-specific TRuC T cells in preclinical solid tumor models. Cell. Oncol. 46, 227–235 (2023).

Article 
CAS 

Google Scholar 

Juraske, C. et al. Reprogramming of human γδ T cells by expression of an anti-CD19 TCR fusion construct (εTRuC) to enhance tumor killing. J. Leuk. Biol. 115, 293–305 (2024).

Article 

Google Scholar 

Li, C. et al. Novel CD19-specific γ/δ TCR-T cells in relapsed or refractory diffuse large B-cell lymphoma. J. Hematol. Oncol. 16, 5 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kuwana, Y. et al. Expression of chimeric receptor composed of immunoglobulin-derived V resions and T-cell receptor-derived C regions. Biochem. Biophys. Res. Commun. 149, 960–968 (1987).

Article 
CAS 
PubMed 

Google Scholar 

Wang, J. et al. A novel adoptive synthetic TCR and antigen receptor (STAR) T-Cell therapy for B-cell acute lymphoblastic leukemia. Am. J. Hematol. 97, 992–1004 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Hassan, R. et al. Mesothelin-targeting T cell receptor fusion construct cell therapy in refractory solid tumors: phase 1/2 trial interim results. Nat. Med. 29, 2099–2109 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

He, P. et al. A novel antibody-TCR (AbTCR) T-cell therapy is safe and effective against CD19-positive relapsed/refractory B-cell lymphoma. J. Cancer Res. Clin. Oncol. 149, 2757–2769 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Singh, N., Perazzelli, J., Grupp, S. A. & Barrett, D. M. Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies. Sci. Transl. Med. 8, 320ra3 (2016).

Article 
PubMed 

Google Scholar 

Fraietta, J. A. et al. Biomarkers of response to anti-CD19 chimeric antigen receptor (CAR) T-cell therapy in patients with chronic lymphocytic leukemia. Blood 128, 57–57 (2016).

Article 

Google Scholar 

Frigault, M. J. et al. Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells. Cancer Immunol. Res. 3, 356–367 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Feucht, J. & Sadelain, M. Function and evolution of the prototypic CD28ζ and 4-1BBζ chimeric antigen receptors. Immunooncol. Technol. 8, 2–11 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Chen, J. et al. Tuning charge density of chimeric antigen receptor optimizes tonic signaling and CAR-T cell fitness. Cell Res. 33, 341–354 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Sarén, T. et al. Complementarity-determining region clustering may cause CAR-T cell dysfunction. Nat. Commun. 14, 4732 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Hudecek, M. et al. The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol. Res. 3, 125–135 (2015).

Article 
CAS 
PubMed 

Google Scholar 

Hombach, A., Hombach, A. A. & Abken, H. Adoptive immunotherapy with genetically engineered T cells: modification of the IgG1 Fc ‘spacer’ domain in the extracellular moiety of chimeric antigen receptors avoids ‘off-target’ activation and unintended initiation of an innate immune response. Gene Ther. 17, 1206–1213 (2010).

Article 
CAS 
PubMed 

Google Scholar 

Watanabe, N. et al. Fine-tuning the CAR spacer improves T-cell potency. Oncoimmunology 5, e1253656 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Myers, D. R., Zikherman, J. & Roose, J. P. Tonic signals: why do lymphocytes bother? Trends Immunol. 38, 844–857 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Stefanová, I. et al. TCR ligand discrimination is enforced by competing ERK positive and SHP-1 negative feedback pathways. Nat. Immunol. 4, 248–254 (2003).

Article 
PubMed 

Google Scholar 

Dustin, M. L. & Choudhuri, K. Signaling and polarized communication across the T cell immunological synapse. Annu. Rev. Cell Dev. Biol. 32, 303–325 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Davenport, A. J. et al. Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity. Proc. Natl Acad. Sci. USA 115, E2068–E2076 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Gross, G., Waks, T. & Eshhar, Z. Expression of immunoglobulin-T-cell receptor 960 chimeric molecules as functional receptors with antibody-type specificity. Proc. Natl Acad. Sci. USA 86, 10024–10028 (1989).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Becker, M. L. et al. Expression of a hybrid immunoglobulin-T cell receptor protein in 963 transgenic mice. Cell 58, 911–921 (1989).

Article 
CAS 
PubMed 

Google Scholar 

Goverman, J. et al. Chimeric immunoglobulin-T cell receptor proteins form functional 965 receptors: implications for T cell receptor complex formation and activation. Cell 60, 966 929–39 (1990).

Article 

Google Scholar 

Eshhar, Z., Waks, T., Gross, G. & Schindler, D. G. Specific activation and targeting of 968 cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding 969 domains and the γ or ζ subunits of the immunoglobulin and T-cell receptors. Proc. Natl Acad. Sci. USA 90, 720–724 (1993).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

McGuinness, R. P. et al. Anti-tumor activity of human T cells expressing the CC49-972 ζ chimeric immune receptor. Hum. Gene Ther. 10, 165–173 (1999).

Article 
CAS 
PubMed 

Google Scholar 

Maher, J., Brentjens, R. J., Gunset, G., Rivière, I. & Sadelain, M. Human T980 lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ 981 /CD28 receptor. Nat. Biotechnol. 20, 70–75 (2002).

Article 
CAS 
PubMed 

Google Scholar 

Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen 977 receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–33 978 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Imai, C. et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 18, 676–684 (2004).

Article 
CAS 
PubMed 

Google Scholar 

He, C. et al. CD19 CAR antigen engagement mechanisms and affinity tuning. Sci. Immunol. 8, eadf1426 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Ghorashian, S. et al. Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat. Med. 25, 1408–1414 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Valitutti, S., Müller, S., Cella, M., Padovan, E. & Lanzavecchia, A. Serial triggering of many T-cell receptors by a few peptide–MHC complexes. Nature 375, 148–151 (1995).

Article 
CAS 
PubMed 

Google Scholar 

Watanabe, K. et al. Target antigen density governs the efficacy of anti-CD20-CD28-CD3 ζ chimeric antigen receptor-modified effector CD8+ T cells. J. Immunol. 194, 911–920 (2015).

Article 
CAS 
PubMed 

Google Scholar 

Feng, Y. et al. Mechanosensing drives acuity of αβ T-cell recognition. Proc. Natl Acad. Sci. USA 114, E8204–E8213 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleAaron Rodgers’ career is unraveling and it’s pure satisfaction to watch
Next Article Vaccine against fentanyl! |Today’s Psychology
Paul E.
  • Website

Related Posts

Chronic absences have not disappeared. Research shows that poor children are most hurt.

June 5, 2025

American Brain Tumor Society’s Metastatic Brain Tumor Collaborative Announces $50,000 Research Grant Opportunity to Fund High-Risk, High-Impact CNS Metastasis Research

October 31, 2024

Massive yard sale in Newtown benefits pancreatic cancer research

October 31, 2024
Leave A Reply Cancel Reply

Latest Posts

Health Canada approves Novartis’ KISQALI® for HR+/HER2- early breast cancer patients at high risk of recurrence

Sheriff, county lawyer seeking mental health funds at Minnesota State Capitol

Chronic absences have not disappeared. Research shows that poor children are most hurt.

Transport Secretary reveals overhaul of aging pneumatic transport systems

Latest Posts

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Welcome to Subjectional!

At Subjectional, we believe that informed opinions are the foundation of a vibrant society. Our mission is to provide insightful, engaging, and balanced information across a diverse range of topics that matter to you. Whether you’re interested in the latest developments in health, navigating the complexities of politics, staying updated on sports, exploring technological advancements, or advancing your career, we’ve got you covered.

Facebook X (Twitter) Instagram Pinterest YouTube

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Facebook X (Twitter) Instagram Pinterest
  • Home
  • About Us
  • Advertise with Us
  • Contact us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 subjectional. Designed by subjectional.

Type above and press Enter to search. Press Esc to cancel.