Morin, C. D., Déziel, E., Gauthier, J., Levesque, R. C. & Lau, G. W. An organ system-based synopsis of Pseudomonas aeruginosa virulence. Virulence 12, 1469–1507 (2021).
Google Scholar
Wood, S. J., Kuzel, T. M. & Shafikhani, S. H. Pseudomonas aeruginosa: infections, animal modeling, and therapeutics. Cells 12, 199 (2023).
Google Scholar
Collaborators, G. B. D. A. R. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 400, 2221–2248 (2022).
Shortridge, D. et al. Geographic and temporal patterns of antimicrobial resistance in Pseudomonas aeruginosa over 20 years from the SENTRY Antimicrobial Surveillance Program: 1997-2016. Open Forum Infect. Dis. 6, S63–S68 (2019).
Google Scholar
Herkel, T. et al. Epidemiology of hospital-acquired pneumonia: results of a Central European multicenter, prospective, observational study compared with data from the European region. Biomed. Pap. 160, 448–455 (2016).
Weiner-Lastinger, L. M. et al. Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: summary of data reported to the National Healthcare Safety Network, 2015-2017. Infect. Control Hosp. Epidemiol. 41, 1–18 (2020).
Google Scholar
Tilahun, M. et al. Bacteriology of community-acquired pneumonia, antimicrobial susceptibility pattern and associated risk factors among HIV patients, Northeast Ethiopia: cross-sectional study. SAGE Open Med. 11, 20503121221145569 (2023).
Google Scholar
Fundation, C. F. Patient Registry: Annual Data Report 2022 (©2023 Cystic Fibrosis Foundation, Bethesda, Maryland, 2023).
Durda-Masny, M. et al. The determinants of survival among adults with cystic fibrosis-a cohort study. J. Physiol. Anthropol. 40, 19 (2021).
Google Scholar
Kwok, W. C., Ho, J. C. M., Tam, T. C. C., Ip, M. S. M. & Lam, D. C. L. Risk factors for Pseudomonas aeruginosa colonization in non-cystic fibrosis bronchiectasis and clinical implications. Respir. Res. 22, 132 (2021).
Google Scholar
Martínez-García, M. et al. Risk factors and relation with mortality of a new acquisition and persistence of Pseudomonas aeruginosa in COPD patients. COPD 18, 333–340 (2021).
Google Scholar
Horcajada, J. P. et al. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin. Microbiol. Rev. 32, e00031–00019 (2019).
Google Scholar
Collaborators, A. R. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).
European Antimicrobial Resistance, C. The burden of bacterial antimicrobial resistance in the WHO European region in 2019: a cross-country systematic analysis. Lancet Public Health 7, e897–e913 (2022).
Tacconelli, E. et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327 (2018).
Google Scholar
CDC, Antibiotic Resistance Threats in the United States, 2019. (Department of Health and Human Services, CDC, Atlanta, GA, USA, 2019).
Adlbrecht, C. et al. Efficacy, immunogenicity, and safety of IC43 recombinant Pseudomonas aeruginosa vaccine in mechanically ventilated intensive care patients-a randomized clinical trial. Crit. Care 24, 74 (2020).
Google Scholar
Döring, G., Meisner, C., Stern, M. & Group, F.V.T.S. A double-blind randomized placebo-controlled phase III study of a Pseudomonas aeruginosa flagella vaccine in cystic fibrosis patients. Proc. Natl. Acad. Sci. USA 104, 11020–11025 (2007).
Google Scholar
Döring, G. Prevention of Pseudomonas aeruginosa infection in cystic fibrosis patients. Int. J. Med. Microbiol. 300, 573–577 (2010).
Google Scholar
Frost, I. et al. The role of bacterial vaccines in the fight against antimicrobial resistance: an analysis of the preclinical and clinical development pipeline. Lancet Microbe 4, e113–e125 (2023).
Google Scholar
Ribet, D. & Cossart, P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect. 17, 173–183 (2015).
Google Scholar
Reynolds, D. & Kollef, M. The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa infections: an update. Drugs 81, 2117–2131 (2021).
Google Scholar
Muggeo, A., Coraux, C. & Guillard, T. Current concepts on Pseudomonas aeruginosa interaction with human airway epithelium. PLoS Pathog. 19, e1011221 (2023).
Google Scholar
Siryaporn, A., Kuchma, S. L., O’Toole, G. A. & Gitai, Z. Surface attachment induces Pseudomonas aeruginosa virulence. Proc. Natl. Acad. Sci. USA 111, 16860–16865 (2014).
Google Scholar
Stones, D. H. & Krachler, A. M. Against the tide: the role of bacterial adhesion in host colonization. Biochem. Soc. Trans. 44, 1571–1580 (2016).
Google Scholar
Ong, E., Wong, M. U. & He, Y. Identification of new features from known bacterial protective vaccine antigens enhances rational vaccine design. Front. Immunol. 8, 1382 (2017).
Google Scholar
Entwisle, C. et al. Safety and immunogenicity of a novel multiple antigen pneumococcal vaccine in adults: a phase 1 randomised clinical trial. Vaccine 35, 7181–7186 (2017).
Google Scholar
Banga Ndzouboukou, J. L. et al. Helicobacter pylori adhesins: HpaA a potential antigen in experimental vaccines for H. pylori. Helicobacter 26, e12758 (2021).
Google Scholar
Zhu, Z., Dong, C., Weng, S. & He, J. Identification of outer membrane protein TolC as the major adhesin and potential vaccine candidate for Vibrio harveyi in hybrid grouper, Epinephelus fuscoguttatus (♀) × E. lanceolatus (♂). Fish Shellfish Immunol. 86, 143–151 (2019).
Google Scholar
Pizza, M., Bekkat-Berkani, R. & Rappuoli, R. Vaccines against meningococcal diseases. Microorganisms 8, 1521 (2020).
Google Scholar
Dewan, K. K., Linz, B., DeRocco, S. E. & Harvill, E. T. Acellular pertussis vaccine components: today and tomorrow. Vaccines 8, 217 (2020).
Google Scholar
McClean, S. et al. Linocin and OmpW are involved in attachment of the cystic fibrosis-associated pathogen Burkholderia cepacia complex to lung epithelial cells and protect mice against infection. Infect. Immun. 84, 1424–1437 (2016).
Google Scholar
Casey, W. T. et al. Identification of an OmpW homologue in Burkholderia pseudomallei, a protective vaccine antigen against melioidosis. Vaccine 34, 2616–2621 (2016).
Google Scholar
Quinn, C. et al. GlnH, a novel antigen that offers partial protection against verocytotoxigenic Escherichia coli Infection. Vaccines 11, 175 (2023).
Google Scholar
Cullen, L. et al. Phenotypic characterization of an international Pseudomonas aeruginosa reference panel: strains of cystic fibrosis (CF) origin show less in vivo virulence than non-CF strains. Microbiology 161, 1961–1977 (2015).
Google Scholar
De Soyza, A. et al. Developing an international Pseudomonas aeruginosa reference panel. Microbiologyopen 2, 1010–1023 (2013).
Google Scholar
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).
Google Scholar
Damron, F. H., Oglesby-Sherrouse, A. G., Wilks, A. & Barbier, M. Dual-seq transcriptomics reveals the battle for iron during Pseudomonas aeruginosa acute murine pneumonia. Sci. Rep. 6, 39172 (2016).
Google Scholar
Sainz-Mejias, M., Jurado-Martin, I. & McClean, S. Understanding Pseudomonas aeruginosa-host interactions: the ongoing quest for an efficacious vaccine. Cells 9, 2617 (2020).
Baker, S. M., McLachlan James, B. & Morici Lisa, A. Immunological considerations in the development of Pseudomonas aeruginosa vaccines. Hum. Vaccines Immunother. 16, 412–418 (2020).
ECDC in ECDC. Annual Epidemiological Report for 2019 (ECDC, Stockholm, 2023).
Diekema, D. J. et al. The microbiology of bloodstream infection: 20-year trends from the SENTRY Antimicrobial Surveillance Program. Antimicrob. Agents Chemother. 63, e00355–00319 (2019).
Google Scholar
Ozlu, O. & Basaran, A. Infections in patients with major burns: a retrospective study of a burn intensive care unit. J. Burn Care Res. 43, 926–930 (2022).
Google Scholar
Liu, Q. et al. Influence of carbapenem resistance on mortality of patients with Pseudomonas aeruginosa infection: a meta-analysis. Sci. Rep. 5, 11715 (2015).
Google Scholar
Pérez, A. et al. High incidence of MDR and XDR Pseudomonas aeruginosa isolates obtained from patients with ventilator-associated pneumonia in Greece, Italy and Spain as part of the MagicBullet clinical trial. J. Antimicrob. Chemother. 74, 1244–1252 (2019).
Google Scholar
López-Siles, M., Corral-Lugo, A. & McConnell, M. J. Vaccines for multidrug resistant gram negative bacteria: lessons from the past for guiding future success. FEMS Microbiol. Rev. 45, fuaa054 (2021).
Google Scholar
Killough, M., Rodgers, A. M. & Ingram, R. J. Pseudomonas aeruginosa: recent advances in vaccine development. Vaccines 10, 1100 (2022).
Google Scholar
Priebe, G. P. & Goldberg, J. B. Vaccines for Pseudomonas aeruginosa: a long and winding road. Expert Rev. Vaccines 13, 507–519 (2014).
Google Scholar
Planet, P. J. Adaptation and evolution of pathogens in the cystic fibrosis lung. J. Pediatr. Infect. Dis. Soc. 11, S23–S31 (2022).
Freschi, L. et al. Genomic characterisation of an international Pseudomonas aeruginosa reference panel indicates that the two major groups draw upon distinct mobile gene pools. FEMS Microbiol. Lett. 365 (2018).
Patel, H. & Gajjar, D. Cell adhesion and twitching motility influence strong biofilm formation in Pseudomonas aeruginosa. Biofouling 38, 235–249 (2022).
Google Scholar
Arhin, A. & Boucher, C. The outer membrane protein OprQ and adherence of Pseudomonas aeruginosa to human fibronectin. Microbiology 156, 1415–1423 (2010).
Google Scholar
Paulsson, M., Su, Y. C., Ringwood, T., Uddén, F. & Riesbeck, K. Pseudomonas aeruginosa uses multiple receptors for adherence to laminin during infection of the respiratory tract and skin wounds. Sci. Rep. 9, 18168 (2019).
Google Scholar
Buckley, A. M. et al. The AcrAB-TolC efflux system of Salmonella enterica serovar Typhimurium plays a role in pathogenesis. Cell. Microbiol. 8, 847–856 (2006).
Google Scholar
Hsieh, P. F., Hsu, C. R., Chen, C. T., Lin, T. L. & Wang, J. T. The Klebsiella pneumoniae YfgL (BamB) lipoprotein contributes to outer membrane protein biogenesis, type-1 fimbriae expression, anti-phagocytosis, and in vivo virulence. Virulence 7, 587–601 (2016).
Google Scholar
Takahashi, H. et al. Modification of lipooligosaccharide with phosphoethanolamine by LptA in Neisseria meningitidis enhances meningococcal adhesion to human endothelial and epithelial cells. Infect. Immun. 76, 5777–5789 (2008).
Google Scholar
Moraes, C. T. et al. Flagellin and GroEL mediates in vitro binding of an atypical enteropathogenic Escherichia coli to cellular fibronectin. BMC Microbiol. 15, 278 (2015).
Google Scholar
Ensgraber, M. & Loos, M. A 66-kilodalton heat shock protein of Salmonella typhimurium is responsible for binding of the bacterium to intestinal mucus. Infect. Immun. 60, 3072–3078 (1992).
Google Scholar
Ur Rahman, M., Wang, P., Wang, N. & Chen, Y. A key bacterial cytoskeletal cell division protein FtsZ as a novel therapeutic antibacterial drug target. Bosn. J. Basic Med. Sci. 20, 310–318 (2020).
Google Scholar
Buroni, S. et al. The cell division protein FtsZ as a cellular target to hit cystic fibrosis pathogens. Eur. J. Med. Chem. 190, 112132 (2020).
Google Scholar
Rahman, M. U. et al. Assembly properties of bacterial tubulin homolog FtsZ regulated by the positive regulator protein ZipA and ZapA from Pseudomonas aeruginosa. Sci. Rep. 10, 21369 (2020).
Google Scholar
Jeffery, C. Protein moonlighting: what is it, and why is it important?. Philos. Trans. R. Soc. B 373, 20160523 (2017).
Barbier, M. et al. Lysine trimethylation of EF-Tu mimics platelet-activating factor to initiate Pseudomonas aeruginosa pneumonia. mBio 4, e00207–e00213 (2013).
Google Scholar
Hallström, T. et al. Pseudomonas aeruginosa uses dihydrolipoamide dehydrogenase (Lpd) to bind to the human terminal pathway regulators vitronectin and clusterin to inhibit terminal pathway complement attack. PLoS ONE 10, e0137630 (2015).
Google Scholar
Bottomley, A. L. et al. The novel E. coli cell division protein, YtfB, plays a role in eukaryotic cell adhesion. Sci. Rep. 10, 6745 (2020).
Google Scholar
Gulati, S. et al. Preclinical efficacy of a cell division protein candidate gonococcal vaccine identified by artificial intelligence. mBio 14, e0250023 (2023).
Gallotta, M. et al. SpyAD, a moonlighting protein of group A Streptococcus contributing to bacterial division and host cell adhesion. Infect. Immun. 82, 2890–2901 (2014).
Google Scholar
Zavan, L. et al. The mechanism of Pseudomonas aeruginosa outer membrane vesicle biogenesis determines their protein composition. Proteomics 23, e2200464 (2023).
Google Scholar
Feng, L. et al. Immunogenicity and protective capacity of EF-Tu and FtsZ of Streptococcus suis serotype 2 against lethal infection. Vaccine 36, 2581–2588 (2018).
Google Scholar
Sheweita, S. A. et al. Bacterial ghosts of Pseudomonas aeruginosa as a promising candidate vaccine and its application in diabetic rats. Vaccines 10, 910 (2022).
Google Scholar
Farjah, A. et al. Immunological evaluation of an alginate-based conjugate as a vaccine candidate against Pseudomonas aeruginosa. APMIS 123, 175–183 (2015).
Google Scholar
Sokol, P. A., Kooi, C., Hodges, R. F., Cachia, P. & Woods, D. E. Immunization with a Pseudomonas aeruginosa elastase peptide reduces severity of experimental lung infections due to P. aeruginosa or Burkholderia cepacia. J. Infect. Dis. 81, 1682–1692 (2000).
Jurado-Martín, I. et al. Development of acute Pseudomonas aeruginosa and Acinetobacter baumannii lung mono-challenge models in mice using oropharyngeal instillation. Access Microbiol. 000860.v1 (2024).
Chuanchuen, R., Murata, T., Gotoh, N. & Schweizer, H. P. Substrate-dependent utilization of OprM or OpmH by the Pseudomonas aeruginosa MexJK efflux pump. Antimicrob. Agents Chemother. 49, 2133–2136 (2005).
Google Scholar
Loots, K., Revets, H. & Goddeeris, B. M. Attachment of the outer membrane lipoprotein (OprI) of Pseudomonas aeruginosa to the mucosal surfaces of the respiratory and digestive tract of chickens. Vaccine 26, 546–551 (2008).
Google Scholar
Cassin, E. K. & Tseng, B. S. Pushing beyond the envelope: the potential roles of OprF in Pseudomonas aeruginosa biofilm formation and pathogenicity. J. Bacteriol. 201, e00050–00019 (2019).
Google Scholar
Li, M. et al. Evaluation of immunogenicity and protective efficacy of recombinant outer membrane proteins of Haemophilus parasuis serovar 5 in a murine model. PLoS ONE 12, e0176537 (2017).
Google Scholar
Kawamoto, S. et al. Site-directed mutagenesis of Glu-141 and His-223 in Pseudomonas aeruginosa elastase: catalytic activity, processing, and protective activity of the elastase against Pseudomonas infection. Infect. Immun. 61, 1400–1405 (1993).
Google Scholar
Matsumoto, T. et al. Efficacies of alkaline protease, elastase and exotoxin A toxoid vaccines against gut-derived Pseudomonas aeruginosa sepsis in mice. J. Med. Microbiol. 47, 303–308 (1998).
Google Scholar
Kashef, N. et al. Synthesis and characterization of Pseudomonas aeruginosa alginate-tetanus toxoid conjugate. J. Med. Microbiol. 55, 1441–1446 (2006).
Google Scholar
Zuercher, A. W. et al. Antibody responses induced by long-term vaccination with an octovalent conjugate Pseudomonas aeruginosa vaccine in children with cystic fibrosis. FEMS Immunol. Med. Microbiol. 47, 302–308 (2006).
Google Scholar
Broquet, A. et al. Depletion of natural killer cells increases mice susceptibility in a Pseudomonas aeruginosa pneumonia model. Crit. Care Med. 42, e441–e450 (2014).
Google Scholar
Feehan, D. D. et al. Natural killer cells kill extracellular Pseudomonas aeruginosa using contact-dependent release of granzymes B and H. PLoS Pathog. 18, e1010325 (2022).
Google Scholar
Embgenbroich, M. & Burgdorf, S. Current concepts of antigen cross-presentation. Front. Immunol. 9, 1643 (2018).
Google Scholar
Baljon, J. J. & Wilson, J. T. Bioinspired vaccines to enhance MHC class-I antigen cross-presentation. Curr. Opin. Immunol. 77, 102215 (2022).
Google Scholar
Ho, N. I., Huis In ‘t Veld, L. G. M., Raaijmakers, T. K. & Adema, G. J. Adjuvants enhancing cross-presentation by dendritic cells: the key to more effective vaccines? Front. Immunol. 9, 2874 (2018).
Google Scholar
Tomas-Cortazar, J. et al. BpOmpW antigen stimulates the necessary protective T-cell responses against melioidosis. Front. Immunol. 12, 767359 (2021).
Google Scholar
Tomas-Cortazar, J. et al. BpOmpW antigen administered with CAF01 adjuvant stimulates comparable T cell responses to Sigma adjuvant system. Vaccine X 17, 100438 (2024).
Google Scholar
Shindo, Y. et al. Interleukin 7 immunotherapy improves host immunity and survival in a two-hit model of Pseudomonas aeruginosa pneumonia. J. Leukoc. Biol. 101, 543–554 (2017).
Google Scholar
Ma, C. et al. A novel inactivated whole-cell Pseudomonas aeruginosa vaccine that acts through the cGAS-STING pathway. Signal Transduct. Target. Ther. 6, 353 (2021).
Google Scholar
Behrouz, B. et al. Immunization with bivalent flagellin protects mice against fatal Pseudomonas aeruginosa pneumonia. J. Immunol. Res. 2017, 5689709 (2017).
Google Scholar
Staczek, J., Gilleland, L. B., van der Heyde, H. C. & Gilleland, H. E. DNA vaccines against chronic lung infections by Pseudomonas aeruginosa. FEMS Immunol. Med. Microbiol. 37, 147–153 (2003).
Google Scholar
Kinjo, T. et al. NKT cells play a limited role in the neutrophilic inflammatory responses and host defense to pulmonary infection with Pseudomonas aeruginosa. Microbes Infect. 8, 2679–2685 (2006).
Google Scholar
Smith, D. J., Hill, G. R., Bell, S. C. & Reid, D. W. Reduced mucosal associated invariant T-cells are associated with increased disease severity and Pseudomonas aeruginosa infection in cystic fibrosis. PLoS ONE 9, e109891 (2014).
Google Scholar
Benoit, P. et al. The role of CD1d-restricted NKT cells in the clearance of Pseudomonas aeruginosa from the lung is dependent on the host genetic background. Infect. Immun. 83, 2557–2565 (2015).
Google Scholar
Tanno, H. et al. Contribution of invariant natural killer T cells to the clearance of Pseudomonas aeruginosa from skin wounds. Int. J. Mol. Sci. 22, 3931 (2021).
Google Scholar
Cabral, M. P. et al. A live auxotrophic vaccine confers mucosal immunity and protection against lethal pneumonia caused by Pseudomonas aeruginosa. PLoS Pathog. 16, e1008311 (2020).
Google Scholar
Jackson, A. D. et al. Validation and use of a parametric model for projecting cystic fibrosis survivorship beyond observed data: a birth cohort analysis. Thorax 66, 674–679 (2011).
Google Scholar
Vidaillac, C., Yong, V. F. L., Jaggi, T. K., Soh, M. M. & Chotirmall, S. H. Gender differences in bronchiectasis: a real issue? Breathe 14, 108–121 (2018).
Google Scholar
Zhou, Y. Y. et al. Gender differences in clinical characteristics of patients with non-cystic fibrosis bronchiectasis in different age groups in northern China. Clin. Respir. J. 17, 311–319 (2023).
Google Scholar
Baumann, U., Göcke, K., Gewecke, B., Freihorst, J. & von Specht, B. U. Assessment of pulmonary antibodies with induced sputum and bronchoalveolar lavage induced by nasal vaccination against Pseudomonas aeruginosa: a clinical phase I/II study. Respir. Res. 8, 57 (2007).
Google Scholar
Baker, S. M., McLachlan, J. B. & Morici, L. A. Immunological considerations in the development of Pseudomonas aeruginosa vaccines. Hum. Vaccines Immunother. 16, 412–418 (2020).
Rello, J. et al. A randomized placebo-controlled phase II study of a Pseudomonas vaccine in ventilated ICU patients. Crit. Care 21, 22 (2017).
Google Scholar
Yang, F. et al. Protective efficacy of the trivalent Pseudomonas aeruginosa vaccine candidate PcrV-OprI-Hcp1 in murine pneumonia and burn models. Sci. Rep. 7, 3957 (2017).
Google Scholar
O’Connor, A. et al. A universal stress protein upregulated by hypoxia has a role in Burkholderia cenocepacia intramacrophage survival: implications for chronic infection in cystic fibrosis. Microbiologyopen 12, e1311 (2023).
Google Scholar
Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2006).
Google Scholar
Consortium, U. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531 (2023).
Chen, C., Zabad, S., Liu, H., Wang, W. & Jeffery, C. MoonProt 2.0: an expansion and update of the moonlighting proteins database. Nucleic Acids Res. 46, D640–D644 (2018).
Google Scholar
Ong, E. et al. Vaxign2: the second generation of the first web-based vaccine design program using reverse vaccinology and machine learning. Nucleic Acids Res. 49, W671–W678 (2021).
Google Scholar
Zaharieva, N., Dimitrov, I., Flower, D. R. & Doytchinova, I. VaxiJen dataset of bacterial immunogens: an update. Curr. Comput. Aided Drug Des. 15, 398–400 (2019).
Google Scholar
Yu, C. S. et al. CELLO2GO: a web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PLoS ONE 9, e99368 (2014).
Google Scholar
Teufel, F. et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 40, 1023–1025 (2022).
Google Scholar
Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
Google Scholar
Winsor, G. L. et al. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res. 44, D646–D653 (2016).
Google Scholar
Macho Rendón, J., Lang, B., Ramos Llorens, M., Gaetano Tartaglia, G. & Torrent Burgas, M. DualSeqDB: the host-pathogen dual RNA sequencing database for infection processes. Nucleic Acids Res. 49, D687–D693 (2021).
Google Scholar
Malyala, P. & Singh, M. Endotoxin limits in formulations for preclinical research. J. Pharm. Sci. 97, 2041–2044 (2008).
Google Scholar
Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).
Google Scholar