Close Menu
  • Home
  • Vaccines
  • Politics
  • Health
  • Tech
  • Sports
  • Research
  • Fitness
  • Careers
What's Hot

Health Canada approves Novartis’ KISQALI® for HR+/HER2- early breast cancer patients at high risk of recurrence

Sheriff, county lawyer seeking mental health funds at Minnesota State Capitol

Chronic absences have not disappeared. Research shows that poor children are most hurt.

Facebook X (Twitter) Instagram
subjectional.com
Subscribe
  • Home
  • Vaccines
  • Politics
  • Health
  • Tech
  • Sports
  • Research
  • Fitness
  • Careers
subjectional.com
Home » Proteomic approach to identify host cell attachment proteins provides protective Pseudomonas aeruginosa vaccine antigen FtsZ
Vaccines

Proteomic approach to identify host cell attachment proteins provides protective Pseudomonas aeruginosa vaccine antigen FtsZ

Paul E.By Paul E.October 28, 2024No Comments17 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Morin, C. D., Déziel, E., Gauthier, J., Levesque, R. C. & Lau, G. W. An organ system-based synopsis of Pseudomonas aeruginosa virulence. Virulence 12, 1469–1507 (2021).

PubMed 
PubMed Central 

Google Scholar 

Wood, S. J., Kuzel, T. M. & Shafikhani, S. H. Pseudomonas aeruginosa: infections, animal modeling, and therapeutics. Cells 12, 199 (2023).

PubMed 
PubMed Central 

Google Scholar 

Collaborators, G. B. D. A. R. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 400, 2221–2248 (2022).

Google Scholar 

Shortridge, D. et al. Geographic and temporal patterns of antimicrobial resistance in Pseudomonas aeruginosa over 20 years from the SENTRY Antimicrobial Surveillance Program: 1997-2016. Open Forum Infect. Dis. 6, S63–S68 (2019).

PubMed 
PubMed Central 

Google Scholar 

Herkel, T. et al. Epidemiology of hospital-acquired pneumonia: results of a Central European multicenter, prospective, observational study compared with data from the European region. Biomed. Pap. 160, 448–455 (2016).

Google Scholar 

Weiner-Lastinger, L. M. et al. Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: summary of data reported to the National Healthcare Safety Network, 2015-2017. Infect. Control Hosp. Epidemiol. 41, 1–18 (2020).

PubMed 

Google Scholar 

Tilahun, M. et al. Bacteriology of community-acquired pneumonia, antimicrobial susceptibility pattern and associated risk factors among HIV patients, Northeast Ethiopia: cross-sectional study. SAGE Open Med. 11, 20503121221145569 (2023).

PubMed 
PubMed Central 

Google Scholar 

Fundation, C. F. Patient Registry: Annual Data Report 2022 (©2023 Cystic Fibrosis Foundation, Bethesda, Maryland, 2023).

Durda-Masny, M. et al. The determinants of survival among adults with cystic fibrosis-a cohort study. J. Physiol. Anthropol. 40, 19 (2021).

PubMed 
PubMed Central 

Google Scholar 

Kwok, W. C., Ho, J. C. M., Tam, T. C. C., Ip, M. S. M. & Lam, D. C. L. Risk factors for Pseudomonas aeruginosa colonization in non-cystic fibrosis bronchiectasis and clinical implications. Respir. Res. 22, 132 (2021).

PubMed 
PubMed Central 

Google Scholar 

Martínez-García, M. et al. Risk factors and relation with mortality of a new acquisition and persistence of Pseudomonas aeruginosa in COPD patients. COPD 18, 333–340 (2021).

PubMed 

Google Scholar 

Horcajada, J. P. et al. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin. Microbiol. Rev. 32, e00031–00019 (2019).

PubMed 
PubMed Central 

Google Scholar 

Collaborators, A. R. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

Google Scholar 

European Antimicrobial Resistance, C. The burden of bacterial antimicrobial resistance in the WHO European region in 2019: a cross-country systematic analysis. Lancet Public Health 7, e897–e913 (2022).

Google Scholar 

Tacconelli, E. et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327 (2018).

PubMed 

Google Scholar 

CDC, Antibiotic Resistance Threats in the United States, 2019. (Department of Health and Human Services, CDC, Atlanta, GA, USA, 2019).

Adlbrecht, C. et al. Efficacy, immunogenicity, and safety of IC43 recombinant Pseudomonas aeruginosa vaccine in mechanically ventilated intensive care patients-a randomized clinical trial. Crit. Care 24, 74 (2020).

PubMed 
PubMed Central 

Google Scholar 

Döring, G., Meisner, C., Stern, M. & Group, F.V.T.S. A double-blind randomized placebo-controlled phase III study of a Pseudomonas aeruginosa flagella vaccine in cystic fibrosis patients. Proc. Natl. Acad. Sci. USA 104, 11020–11025 (2007).

PubMed 
PubMed Central 

Google Scholar 

Döring, G. Prevention of Pseudomonas aeruginosa infection in cystic fibrosis patients. Int. J. Med. Microbiol. 300, 573–577 (2010).

PubMed 

Google Scholar 

Frost, I. et al. The role of bacterial vaccines in the fight against antimicrobial resistance: an analysis of the preclinical and clinical development pipeline. Lancet Microbe 4, e113–e125 (2023).

PubMed 
PubMed Central 

Google Scholar 

Ribet, D. & Cossart, P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect. 17, 173–183 (2015).

PubMed 

Google Scholar 

Reynolds, D. & Kollef, M. The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa infections: an update. Drugs 81, 2117–2131 (2021).

PubMed 
PubMed Central 

Google Scholar 

Muggeo, A., Coraux, C. & Guillard, T. Current concepts on Pseudomonas aeruginosa interaction with human airway epithelium. PLoS Pathog. 19, e1011221 (2023).

PubMed 
PubMed Central 

Google Scholar 

Siryaporn, A., Kuchma, S. L., O’Toole, G. A. & Gitai, Z. Surface attachment induces Pseudomonas aeruginosa virulence. Proc. Natl. Acad. Sci. USA 111, 16860–16865 (2014).

PubMed 
PubMed Central 

Google Scholar 

Stones, D. H. & Krachler, A. M. Against the tide: the role of bacterial adhesion in host colonization. Biochem. Soc. Trans. 44, 1571–1580 (2016).

PubMed 
PubMed Central 

Google Scholar 

Ong, E., Wong, M. U. & He, Y. Identification of new features from known bacterial protective vaccine antigens enhances rational vaccine design. Front. Immunol. 8, 1382 (2017).

PubMed 
PubMed Central 

Google Scholar 

Entwisle, C. et al. Safety and immunogenicity of a novel multiple antigen pneumococcal vaccine in adults: a phase 1 randomised clinical trial. Vaccine 35, 7181–7186 (2017).

PubMed 

Google Scholar 

Banga Ndzouboukou, J. L. et al. Helicobacter pylori adhesins: HpaA a potential antigen in experimental vaccines for H. pylori. Helicobacter 26, e12758 (2021).

PubMed 

Google Scholar 

Zhu, Z., Dong, C., Weng, S. & He, J. Identification of outer membrane protein TolC as the major adhesin and potential vaccine candidate for Vibrio harveyi in hybrid grouper, Epinephelus fuscoguttatus (♀) × E. lanceolatus (♂). Fish Shellfish Immunol. 86, 143–151 (2019).

PubMed 

Google Scholar 

Pizza, M., Bekkat-Berkani, R. & Rappuoli, R. Vaccines against meningococcal diseases. Microorganisms 8, 1521 (2020).

PubMed 
PubMed Central 

Google Scholar 

Dewan, K. K., Linz, B., DeRocco, S. E. & Harvill, E. T. Acellular pertussis vaccine components: today and tomorrow. Vaccines 8, 217 (2020).

PubMed 
PubMed Central 

Google Scholar 

McClean, S. et al. Linocin and OmpW are involved in attachment of the cystic fibrosis-associated pathogen Burkholderia cepacia complex to lung epithelial cells and protect mice against infection. Infect. Immun. 84, 1424–1437 (2016).

PubMed 
PubMed Central 

Google Scholar 

Casey, W. T. et al. Identification of an OmpW homologue in Burkholderia pseudomallei, a protective vaccine antigen against melioidosis. Vaccine 34, 2616–2621 (2016).

PubMed 

Google Scholar 

Quinn, C. et al. GlnH, a novel antigen that offers partial protection against verocytotoxigenic Escherichia coli Infection. Vaccines 11, 175 (2023).

PubMed 
PubMed Central 

Google Scholar 

Cullen, L. et al. Phenotypic characterization of an international Pseudomonas aeruginosa reference panel: strains of cystic fibrosis (CF) origin show less in vivo virulence than non-CF strains. Microbiology 161, 1961–1977 (2015).

PubMed 

Google Scholar 

De Soyza, A. et al. Developing an international Pseudomonas aeruginosa reference panel. Microbiologyopen 2, 1010–1023 (2013).

PubMed 
PubMed Central 

Google Scholar 

Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

PubMed 
PubMed Central 

Google Scholar 

Damron, F. H., Oglesby-Sherrouse, A. G., Wilks, A. & Barbier, M. Dual-seq transcriptomics reveals the battle for iron during Pseudomonas aeruginosa acute murine pneumonia. Sci. Rep. 6, 39172 (2016).

PubMed 
PubMed Central 

Google Scholar 

Sainz-Mejias, M., Jurado-Martin, I. & McClean, S. Understanding Pseudomonas aeruginosa-host interactions: the ongoing quest for an efficacious vaccine. Cells 9, 2617 (2020).

Baker, S. M., McLachlan James, B. & Morici Lisa, A. Immunological considerations in the development of Pseudomonas aeruginosa vaccines. Hum. Vaccines Immunother. 16, 412–418 (2020).

Google Scholar 

ECDC in ECDC. Annual Epidemiological Report for 2019 (ECDC, Stockholm, 2023).

Diekema, D. J. et al. The microbiology of bloodstream infection: 20-year trends from the SENTRY Antimicrobial Surveillance Program. Antimicrob. Agents Chemother. 63, e00355–00319 (2019).

PubMed 
PubMed Central 

Google Scholar 

Ozlu, O. & Basaran, A. Infections in patients with major burns: a retrospective study of a burn intensive care unit. J. Burn Care Res. 43, 926–930 (2022).

PubMed 

Google Scholar 

Liu, Q. et al. Influence of carbapenem resistance on mortality of patients with Pseudomonas aeruginosa infection: a meta-analysis. Sci. Rep. 5, 11715 (2015).

PubMed 
PubMed Central 

Google Scholar 

Pérez, A. et al. High incidence of MDR and XDR Pseudomonas aeruginosa isolates obtained from patients with ventilator-associated pneumonia in Greece, Italy and Spain as part of the MagicBullet clinical trial. J. Antimicrob. Chemother. 74, 1244–1252 (2019).

PubMed 

Google Scholar 

López-Siles, M., Corral-Lugo, A. & McConnell, M. J. Vaccines for multidrug resistant gram negative bacteria: lessons from the past for guiding future success. FEMS Microbiol. Rev. 45, fuaa054 (2021).

PubMed 

Google Scholar 

Killough, M., Rodgers, A. M. & Ingram, R. J. Pseudomonas aeruginosa: recent advances in vaccine development. Vaccines 10, 1100 (2022).

PubMed 
PubMed Central 

Google Scholar 

Priebe, G. P. & Goldberg, J. B. Vaccines for Pseudomonas aeruginosa: a long and winding road. Expert Rev. Vaccines 13, 507–519 (2014).

PubMed 
PubMed Central 

Google Scholar 

Planet, P. J. Adaptation and evolution of pathogens in the cystic fibrosis lung. J. Pediatr. Infect. Dis. Soc. 11, S23–S31 (2022).

Google Scholar 

Freschi, L. et al. Genomic characterisation of an international Pseudomonas aeruginosa reference panel indicates that the two major groups draw upon distinct mobile gene pools. FEMS Microbiol. Lett. 365 (2018).

Patel, H. & Gajjar, D. Cell adhesion and twitching motility influence strong biofilm formation in Pseudomonas aeruginosa. Biofouling 38, 235–249 (2022).

PubMed 

Google Scholar 

Arhin, A. & Boucher, C. The outer membrane protein OprQ and adherence of Pseudomonas aeruginosa to human fibronectin. Microbiology 156, 1415–1423 (2010).

PubMed 

Google Scholar 

Paulsson, M., Su, Y. C., Ringwood, T., Uddén, F. & Riesbeck, K. Pseudomonas aeruginosa uses multiple receptors for adherence to laminin during infection of the respiratory tract and skin wounds. Sci. Rep. 9, 18168 (2019).

PubMed 
PubMed Central 

Google Scholar 

Buckley, A. M. et al. The AcrAB-TolC efflux system of Salmonella enterica serovar Typhimurium plays a role in pathogenesis. Cell. Microbiol. 8, 847–856 (2006).

PubMed 

Google Scholar 

Hsieh, P. F., Hsu, C. R., Chen, C. T., Lin, T. L. & Wang, J. T. The Klebsiella pneumoniae YfgL (BamB) lipoprotein contributes to outer membrane protein biogenesis, type-1 fimbriae expression, anti-phagocytosis, and in vivo virulence. Virulence 7, 587–601 (2016).

PubMed 
PubMed Central 

Google Scholar 

Takahashi, H. et al. Modification of lipooligosaccharide with phosphoethanolamine by LptA in Neisseria meningitidis enhances meningococcal adhesion to human endothelial and epithelial cells. Infect. Immun. 76, 5777–5789 (2008).

PubMed 
PubMed Central 

Google Scholar 

Moraes, C. T. et al. Flagellin and GroEL mediates in vitro binding of an atypical enteropathogenic Escherichia coli to cellular fibronectin. BMC Microbiol. 15, 278 (2015).

PubMed 
PubMed Central 

Google Scholar 

Ensgraber, M. & Loos, M. A 66-kilodalton heat shock protein of Salmonella typhimurium is responsible for binding of the bacterium to intestinal mucus. Infect. Immun. 60, 3072–3078 (1992).

PubMed 
PubMed Central 

Google Scholar 

Ur Rahman, M., Wang, P., Wang, N. & Chen, Y. A key bacterial cytoskeletal cell division protein FtsZ as a novel therapeutic antibacterial drug target. Bosn. J. Basic Med. Sci. 20, 310–318 (2020).

PubMed 

Google Scholar 

Buroni, S. et al. The cell division protein FtsZ as a cellular target to hit cystic fibrosis pathogens. Eur. J. Med. Chem. 190, 112132 (2020).

PubMed 

Google Scholar 

Rahman, M. U. et al. Assembly properties of bacterial tubulin homolog FtsZ regulated by the positive regulator protein ZipA and ZapA from Pseudomonas aeruginosa. Sci. Rep. 10, 21369 (2020).

PubMed 
PubMed Central 

Google Scholar 

Jeffery, C. Protein moonlighting: what is it, and why is it important?. Philos. Trans. R. Soc. B 373, 20160523 (2017).

Google Scholar 

Barbier, M. et al. Lysine trimethylation of EF-Tu mimics platelet-activating factor to initiate Pseudomonas aeruginosa pneumonia. mBio 4, e00207–e00213 (2013).

PubMed 
PubMed Central 

Google Scholar 

Hallström, T. et al. Pseudomonas aeruginosa uses dihydrolipoamide dehydrogenase (Lpd) to bind to the human terminal pathway regulators vitronectin and clusterin to inhibit terminal pathway complement attack. PLoS ONE 10, e0137630 (2015).

PubMed 
PubMed Central 

Google Scholar 

Bottomley, A. L. et al. The novel E. coli cell division protein, YtfB, plays a role in eukaryotic cell adhesion. Sci. Rep. 10, 6745 (2020).

PubMed 
PubMed Central 

Google Scholar 

Gulati, S. et al. Preclinical efficacy of a cell division protein candidate gonococcal vaccine identified by artificial intelligence. mBio 14, e0250023 (2023).

Gallotta, M. et al. SpyAD, a moonlighting protein of group A Streptococcus contributing to bacterial division and host cell adhesion. Infect. Immun. 82, 2890–2901 (2014).

PubMed 
PubMed Central 

Google Scholar 

Zavan, L. et al. The mechanism of Pseudomonas aeruginosa outer membrane vesicle biogenesis determines their protein composition. Proteomics 23, e2200464 (2023).

PubMed 

Google Scholar 

Feng, L. et al. Immunogenicity and protective capacity of EF-Tu and FtsZ of Streptococcus suis serotype 2 against lethal infection. Vaccine 36, 2581–2588 (2018).

PubMed 

Google Scholar 

Sheweita, S. A. et al. Bacterial ghosts of Pseudomonas aeruginosa as a promising candidate vaccine and its application in diabetic rats. Vaccines 10, 910 (2022).

PubMed 
PubMed Central 

Google Scholar 

Farjah, A. et al. Immunological evaluation of an alginate-based conjugate as a vaccine candidate against Pseudomonas aeruginosa. APMIS 123, 175–183 (2015).

PubMed 

Google Scholar 

Sokol, P. A., Kooi, C., Hodges, R. F., Cachia, P. & Woods, D. E. Immunization with a Pseudomonas aeruginosa elastase peptide reduces severity of experimental lung infections due to P. aeruginosa or Burkholderia cepacia. J. Infect. Dis. 81, 1682–1692 (2000).

Google Scholar 

Jurado-Martín, I. et al. Development of acute Pseudomonas aeruginosa and Acinetobacter baumannii lung mono-challenge models in mice using oropharyngeal instillation. Access Microbiol. 000860.v1 (2024).

Chuanchuen, R., Murata, T., Gotoh, N. & Schweizer, H. P. Substrate-dependent utilization of OprM or OpmH by the Pseudomonas aeruginosa MexJK efflux pump. Antimicrob. Agents Chemother. 49, 2133–2136 (2005).

PubMed 
PubMed Central 

Google Scholar 

Loots, K., Revets, H. & Goddeeris, B. M. Attachment of the outer membrane lipoprotein (OprI) of Pseudomonas aeruginosa to the mucosal surfaces of the respiratory and digestive tract of chickens. Vaccine 26, 546–551 (2008).

PubMed 

Google Scholar 

Cassin, E. K. & Tseng, B. S. Pushing beyond the envelope: the potential roles of OprF in Pseudomonas aeruginosa biofilm formation and pathogenicity. J. Bacteriol. 201, e00050–00019 (2019).

PubMed 
PubMed Central 

Google Scholar 

Li, M. et al. Evaluation of immunogenicity and protective efficacy of recombinant outer membrane proteins of Haemophilus parasuis serovar 5 in a murine model. PLoS ONE 12, e0176537 (2017).

PubMed 
PubMed Central 

Google Scholar 

Kawamoto, S. et al. Site-directed mutagenesis of Glu-141 and His-223 in Pseudomonas aeruginosa elastase: catalytic activity, processing, and protective activity of the elastase against Pseudomonas infection. Infect. Immun. 61, 1400–1405 (1993).

PubMed 
PubMed Central 

Google Scholar 

Matsumoto, T. et al. Efficacies of alkaline protease, elastase and exotoxin A toxoid vaccines against gut-derived Pseudomonas aeruginosa sepsis in mice. J. Med. Microbiol. 47, 303–308 (1998).

PubMed 

Google Scholar 

Kashef, N. et al. Synthesis and characterization of Pseudomonas aeruginosa alginate-tetanus toxoid conjugate. J. Med. Microbiol. 55, 1441–1446 (2006).

PubMed 

Google Scholar 

Zuercher, A. W. et al. Antibody responses induced by long-term vaccination with an octovalent conjugate Pseudomonas aeruginosa vaccine in children with cystic fibrosis. FEMS Immunol. Med. Microbiol. 47, 302–308 (2006).

PubMed 

Google Scholar 

Broquet, A. et al. Depletion of natural killer cells increases mice susceptibility in a Pseudomonas aeruginosa pneumonia model. Crit. Care Med. 42, e441–e450 (2014).

PubMed 

Google Scholar 

Feehan, D. D. et al. Natural killer cells kill extracellular Pseudomonas aeruginosa using contact-dependent release of granzymes B and H. PLoS Pathog. 18, e1010325 (2022).

PubMed 
PubMed Central 

Google Scholar 

Embgenbroich, M. & Burgdorf, S. Current concepts of antigen cross-presentation. Front. Immunol. 9, 1643 (2018).

PubMed 
PubMed Central 

Google Scholar 

Baljon, J. J. & Wilson, J. T. Bioinspired vaccines to enhance MHC class-I antigen cross-presentation. Curr. Opin. Immunol. 77, 102215 (2022).

PubMed 
PubMed Central 

Google Scholar 

Ho, N. I., Huis In ‘t Veld, L. G. M., Raaijmakers, T. K. & Adema, G. J. Adjuvants enhancing cross-presentation by dendritic cells: the key to more effective vaccines? Front. Immunol. 9, 2874 (2018).

PubMed 
PubMed Central 

Google Scholar 

Tomas-Cortazar, J. et al. BpOmpW antigen stimulates the necessary protective T-cell responses against melioidosis. Front. Immunol. 12, 767359 (2021).

PubMed 
PubMed Central 

Google Scholar 

Tomas-Cortazar, J. et al. BpOmpW antigen administered with CAF01 adjuvant stimulates comparable T cell responses to Sigma adjuvant system. Vaccine X 17, 100438 (2024).

PubMed 
PubMed Central 

Google Scholar 

Shindo, Y. et al. Interleukin 7 immunotherapy improves host immunity and survival in a two-hit model of Pseudomonas aeruginosa pneumonia. J. Leukoc. Biol. 101, 543–554 (2017).

PubMed 

Google Scholar 

Ma, C. et al. A novel inactivated whole-cell Pseudomonas aeruginosa vaccine that acts through the cGAS-STING pathway. Signal Transduct. Target. Ther. 6, 353 (2021).

PubMed 
PubMed Central 

Google Scholar 

Behrouz, B. et al. Immunization with bivalent flagellin protects mice against fatal Pseudomonas aeruginosa pneumonia. J. Immunol. Res. 2017, 5689709 (2017).

PubMed 
PubMed Central 

Google Scholar 

Staczek, J., Gilleland, L. B., van der Heyde, H. C. & Gilleland, H. E. DNA vaccines against chronic lung infections by Pseudomonas aeruginosa. FEMS Immunol. Med. Microbiol. 37, 147–153 (2003).

PubMed 

Google Scholar 

Kinjo, T. et al. NKT cells play a limited role in the neutrophilic inflammatory responses and host defense to pulmonary infection with Pseudomonas aeruginosa. Microbes Infect. 8, 2679–2685 (2006).

PubMed 

Google Scholar 

Smith, D. J., Hill, G. R., Bell, S. C. & Reid, D. W. Reduced mucosal associated invariant T-cells are associated with increased disease severity and Pseudomonas aeruginosa infection in cystic fibrosis. PLoS ONE 9, e109891 (2014).

PubMed 
PubMed Central 

Google Scholar 

Benoit, P. et al. The role of CD1d-restricted NKT cells in the clearance of Pseudomonas aeruginosa from the lung is dependent on the host genetic background. Infect. Immun. 83, 2557–2565 (2015).

PubMed 
PubMed Central 

Google Scholar 

Tanno, H. et al. Contribution of invariant natural killer T cells to the clearance of Pseudomonas aeruginosa from skin wounds. Int. J. Mol. Sci. 22, 3931 (2021).

PubMed 
PubMed Central 

Google Scholar 

Cabral, M. P. et al. A live auxotrophic vaccine confers mucosal immunity and protection against lethal pneumonia caused by Pseudomonas aeruginosa. PLoS Pathog. 16, e1008311 (2020).

PubMed 
PubMed Central 

Google Scholar 

Jackson, A. D. et al. Validation and use of a parametric model for projecting cystic fibrosis survivorship beyond observed data: a birth cohort analysis. Thorax 66, 674–679 (2011).

PubMed 

Google Scholar 

Vidaillac, C., Yong, V. F. L., Jaggi, T. K., Soh, M. M. & Chotirmall, S. H. Gender differences in bronchiectasis: a real issue? Breathe 14, 108–121 (2018).

PubMed 
PubMed Central 

Google Scholar 

Zhou, Y. Y. et al. Gender differences in clinical characteristics of patients with non-cystic fibrosis bronchiectasis in different age groups in northern China. Clin. Respir. J. 17, 311–319 (2023).

PubMed 
PubMed Central 

Google Scholar 

Baumann, U., Göcke, K., Gewecke, B., Freihorst, J. & von Specht, B. U. Assessment of pulmonary antibodies with induced sputum and bronchoalveolar lavage induced by nasal vaccination against Pseudomonas aeruginosa: a clinical phase I/II study. Respir. Res. 8, 57 (2007).

PubMed 
PubMed Central 

Google Scholar 

Baker, S. M., McLachlan, J. B. & Morici, L. A. Immunological considerations in the development of Pseudomonas aeruginosa vaccines. Hum. Vaccines Immunother. 16, 412–418 (2020).

Google Scholar 

Rello, J. et al. A randomized placebo-controlled phase II study of a Pseudomonas vaccine in ventilated ICU patients. Crit. Care 21, 22 (2017).

PubMed 
PubMed Central 

Google Scholar 

Yang, F. et al. Protective efficacy of the trivalent Pseudomonas aeruginosa vaccine candidate PcrV-OprI-Hcp1 in murine pneumonia and burn models. Sci. Rep. 7, 3957 (2017).

PubMed 
PubMed Central 

Google Scholar 

O’Connor, A. et al. A universal stress protein upregulated by hypoxia has a role in Burkholderia cenocepacia intramacrophage survival: implications for chronic infection in cystic fibrosis. Microbiologyopen 12, e1311 (2023).

PubMed 

Google Scholar 

Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2006).

PubMed 

Google Scholar 

Consortium, U. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531 (2023).

Google Scholar 

Chen, C., Zabad, S., Liu, H., Wang, W. & Jeffery, C. MoonProt 2.0: an expansion and update of the moonlighting proteins database. Nucleic Acids Res. 46, D640–D644 (2018).

PubMed 

Google Scholar 

Ong, E. et al. Vaxign2: the second generation of the first web-based vaccine design program using reverse vaccinology and machine learning. Nucleic Acids Res. 49, W671–W678 (2021).

PubMed 
PubMed Central 

Google Scholar 

Zaharieva, N., Dimitrov, I., Flower, D. R. & Doytchinova, I. VaxiJen dataset of bacterial immunogens: an update. Curr. Comput. Aided Drug Des. 15, 398–400 (2019).

PubMed 

Google Scholar 

Yu, C. S. et al. CELLO2GO: a web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PLoS ONE 9, e99368 (2014).

PubMed 
PubMed Central 

Google Scholar 

Teufel, F. et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 40, 1023–1025 (2022).

PubMed 
PubMed Central 

Google Scholar 

Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

PubMed 
PubMed Central 

Google Scholar 

Winsor, G. L. et al. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res. 44, D646–D653 (2016).

PubMed 

Google Scholar 

Macho Rendón, J., Lang, B., Ramos Llorens, M., Gaetano Tartaglia, G. & Torrent Burgas, M. DualSeqDB: the host-pathogen dual RNA sequencing database for infection processes. Nucleic Acids Res. 49, D687–D693 (2021).

PubMed 

Google Scholar 

Malyala, P. & Singh, M. Endotoxin limits in formulations for preclinical research. J. Pharm. Sci. 97, 2041–2044 (2008).

PubMed 

Google Scholar 

Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).

PubMed 

Google Scholar 



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleSteelers’ Justin Fields (hamstring) will serve as emergency QB against the Giants. Russell Wilson has a new backup
Next Article Kamala Harris and Donald Trump court swing states
Paul E.
  • Website

Related Posts

Kentucky leaders emphasize whooping cough vaccination

October 31, 2024

Safety, efficacy and immunogenicity of aerosolized Ad5-nCoV COVID-19 vaccine in a non-inferiority randomized controlled trial

October 31, 2024

Trust is important, but increasing vaccination rates also requires three things

October 31, 2024
Leave A Reply Cancel Reply

Latest Posts

Health Canada approves Novartis’ KISQALI® for HR+/HER2- early breast cancer patients at high risk of recurrence

Sheriff, county lawyer seeking mental health funds at Minnesota State Capitol

Chronic absences have not disappeared. Research shows that poor children are most hurt.

Transport Secretary reveals overhaul of aging pneumatic transport systems

Latest Posts

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Welcome to Subjectional!

At Subjectional, we believe that informed opinions are the foundation of a vibrant society. Our mission is to provide insightful, engaging, and balanced information across a diverse range of topics that matter to you. Whether you’re interested in the latest developments in health, navigating the complexities of politics, staying updated on sports, exploring technological advancements, or advancing your career, we’ve got you covered.

Facebook X (Twitter) Instagram Pinterest YouTube

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Facebook X (Twitter) Instagram Pinterest
  • Home
  • About Us
  • Advertise with Us
  • Contact us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 subjectional. Designed by subjectional.

Type above and press Enter to search. Press Esc to cancel.