Close Menu
  • Home
  • Vaccines
  • Politics
  • Health
  • Tech
  • Sports
  • Research
  • Fitness
  • Careers
What's Hot

Health Canada approves Novartis’ KISQALI® for HR+/HER2- early breast cancer patients at high risk of recurrence

Sheriff, county lawyer seeking mental health funds at Minnesota State Capitol

Chronic absences have not disappeared. Research shows that poor children are most hurt.

Facebook X (Twitter) Instagram
subjectional.com
Subscribe
  • Home
  • Vaccines
  • Politics
  • Health
  • Tech
  • Sports
  • Research
  • Fitness
  • Careers
subjectional.com
Home » Vax-Innate: improving therapeutic cancer vaccines by modulating T cells and the tumour microenvironment
Vaccines

Vax-Innate: improving therapeutic cancer vaccines by modulating T cells and the tumour microenvironment

Paul E.By Paul E.October 21, 2024No Comments31 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


Mellman, I., Chen, D. S., Powles, T. & Turley, S. J. The cancer-immunity cycle: indication, genotype, and immunotype. Immunity 56, 2188–2205 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Lang, F., Schrörs, B., Löwer, M., Türeci, Ö. & Sahin, U. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat. Rev. Drug Discov. 21, 261–282 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Johnson, D. B., Nebhan, C. A., Moslehi, J. J. & Balko, J. M. Immune-checkpoint inhibitors: long-term implications of toxicity. Nat. Rev. Clin. Oncol. 19, 254–267 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Fares, C. M., Allen, E. M. V., Drake, C. G., Allison, J. P. & Hu-Lieskovan, S. Mechanisms of resistance to immune checkpoint blockade: why does checkpoint inhibitor immunotherapy not work for all patients? Am. Soc. Clin. Oncol. Educ. Book 39, 147–164 (2019).

Article 
PubMed 

Google Scholar 

Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

de Visser, K. E. & Joyce, J. A. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 41, 374–403 (2023).

Article 
PubMed 

Google Scholar 

Almagro, J., Messal, H. A., Elosegui-Artola, A., Rheenen, Jvan & Behrens, A. Tissue architecture in tumor initiation and progression. Trends Cancer 8, 494–505 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Shi, R., Tang, Y. & Miao, H. Metabolism in tumor microenvironment: implications for cancer immunotherapy. MedComm 1, 47–68 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

Kartikasari, A. E. R., Huertas, C. S., Mitchell, A. & Plebanski, M. Tumor-induced inflammatory cytokines and the emerging diagnostic devices for cancer detection and prognosis. Front. Oncol. 11, 692142 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Liu, Y., Guo, J. & Huang, L. Modulation of tumor microenvironment for immunotherapy: focus on nanomaterial-based strategies. Theranostics 10, 3099–3117 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Leko, V. & Rosenberg, S. A. Identifying and targeting human tumor antigens for T cell-based immunotherapy of solid tumors. Cancer Cell 38, 454–472 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Monte, U. D. Does the cell number 109 still really fit one gram of tumor tissue? Cell Cycle 8, 505–506 (2009).

Article 
PubMed 

Google Scholar 

Mallet, M. et al. Tumour burden and antigen-specific T cell magnitude represent major parameters for clinical response to cancer vaccine and TCR-engineered T cell therapy. Eur. J. Cancer 171, 96–105 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Nagarsheth, N. B. et al. TCR-engineered T cells targeting E7 for patients with metastatic HPV-associated epithelial cancers. Nat. Med. 27, 419–425 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Sterner, R. C. & Sterner, R. M. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 11, 69 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Siddiqui, I. et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211.e10 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Krishna, S. et al. Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science 370, 1328–1334 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Morotti, M. et al. Promises and challenges of adoptive T-cell therapies for solid tumours. Br. J. Cancer 124, 1759–1776 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Baharom, F. et al. Intravenous nanoparticle vaccination generates stem-like TCF1+ neoantigen-specific CD8+ T cells. Nat. Immunol. 22, 41–52 (2021).

Article 
CAS 
PubMed 

Google Scholar 

D’Alise, A. M. et al. Adenoviral-based vaccine promotes neoantigen-specific CD8+ T cell stemness and tumor rejection. Sci. Transl. Med. 14, eabo7604 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Quezada, S. A. et al. Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J. Exp. Med. 207, 637–650 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Magen, A. et al. Intratumoral dendritic cell–CD4+ T helper cell niches enable CD8+ T cell differentiation following PD-1 blockade in hepatocellular carcinoma. Nat. Med. 29, 1389–1399 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Schietinger, A., Philip, M., Liu, R. B., Schreiber, K. & Schreiber, H. Bystander killing of cancer requires the cooperation of CD4+ and CD8+ T cells during the effector phase. J. Exp. Med. 207, 2469–2477 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Alspach, E., Lussier, D. M. & Schreiber, R. D. Interferon γ and its important roles in promoting and inhibiting spontaneous and therapeutic cancer immunity. Csh Perspect. Biol. 11, a028480 (2019).

CAS 

Google Scholar 

Espinosa-Carrasco, G. et al. Intratumoral immune triads are required for immunotherapy-mediated elimination of solid tumors. Cancer Cell 42, 1202–1216.e8 (2024).

Article 
CAS 
PubMed 

Google Scholar 

Schoenberger, S. P., Toes, R. E. M., Voort, E. I. H., van der, Offringa, R. & Melief, C. J. M. T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 393, 480–483 (1998).

Article 
CAS 
PubMed 

Google Scholar 

Ossendorp, F., Mengedé, E., Camps, M., Filius, R. & Melief, C. J. M. Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J. Exp. Med. 187, 693–702 (1998).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

de Graaf, F. J. et al. Neoantigen-specific T-cell help outperforms non-specific help in multi-antigen DNA vaccination against cancer. Mol. Ther. Oncol. 32, 200835 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar 

Ninmer, E. K. et al. Multipeptide vaccines for melanoma in the adjuvant setting: long-term survival outcomes and post-hoc analysis of a randomized phase II trial. Nat. Commun. 15, 2570 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kappler, J. W., Roehm, N. & Marrack, P. T cell tolerance by clonal elimination in the thymus. Cell 49, 273–280 (1987).

Article 
CAS 
PubMed 

Google Scholar 

Pearlman, A. H. et al. Targeting public neoantigens for cancer immunotherapy. Nat. Cancer 2, 487–497 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Supabphol, S., Li, L., Goedegebuure, S. P. & Gillanders, W. E. Neoantigen vaccine platforms in clinical development: understanding the future of personalized immunotherapy. Expert. Opin. Investig. Drugs 30, 529–541 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Xie, N. et al. Neoantigens: promising targets for cancer therapy. Signal. Transduct. Target. Ther. 8, 9 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Fotakis, G., Trajanoski, Z. & Rieder, D. Computational cancer neoantigen prediction: current status and recent advances. Immuno-Oncol. Technol. 12, 100052 (2021).

Article 
CAS 

Google Scholar 

Boegel, S., Castle, J. C., Kodysh, J., O’Donnell, T. & Rubinsteyn, A. Bioinformatic methods for cancer neoantigen prediction. Prog. Mol. Biol. Transl. Sci. 164, 25–60 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Thrift, W. J. et al. HLApollo: a superior transformer model for pan-allelic peptide–MHC-I presentation prediction, with diverse negative coverage, deconvolution and protein language features. Preprint at bioRxiv https://doi.org/10.1101/2022.12.08.519673 (2022).

Burger, M. L. et al. Antigen dominance hierarchies shape TCF1+ progenitor CD8 T cell phenotypes in tumors. Cell 184, 4996–5014.e26 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Bechter, O. et al. 706 NOUS-PEV, a novel personalized viral-based prime/boost cancer immunotherapy targeting patient-specific neoantigens: interim results from the first subjects in the phase 1b study (Regular and Young Investigator Award Abstract). J. Immunother. Cancer 10, A738 (2022).

D’Alise, A. M. et al. Phase I trial of viral vector based personalized vaccination elicits robust neoantigen specific antitumor T cell responses. Clin. Cancer Res. 30, 2412–2423 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar 

Rappaport, A. R. et al. A shared neoantigen vaccine combined with immune checkpoint blockade for advanced metastatic solid tumors: phase 1 trial interim results. Nat. Med. 30, 1013–1022 (2024).

Article 
CAS 
PubMed 

Google Scholar 

Walter, S. et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat. Med. 18, 1254–1261 (2012).

Article 
CAS 
PubMed 

Google Scholar 

Cafri, G. et al. mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. J. Clin. Invest. 130, 5976–5988 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Yoshitake, Y. et al. Phase II clinical trial of multiple peptide vaccination for advanced head and neck cancer patients revealed induction of immune responses and improved OS. Clin. Cancer Res. 21, 312–321 (2015).

Article 
CAS 
PubMed 

Google Scholar 

Somaiah, N. et al. A phase 1b study evaluating the safety, tolerability, and immunogenicity of CMB305, a lentiviral-based prime-boost vaccine regimen, in patients with locally advanced, relapsed, or metastatic cancer expressing NY-ESO-1. OncoImmunology 9, 1847846 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

Sundar, R. et al. A phase I/Ib study of OTSGC-A24 combined peptide vaccine in advanced gastric cancer. BMC Cancer 18, 332 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Ding, Z. et al. Personalized neoantigen pulsed dendritic cell vaccine for advanced lung cancer. Signal. Transduct. Target. Ther. 6, 26 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kaida, M. et al. Phase 1 trial of Wilms tumor 1 (WT1) peptide vaccine and gemcitabine combination therapy in patients with advanced pancreatic or biliary tract cancer. J. Immunother. 34, 92–99 (2011).

Article 
CAS 
PubMed 

Google Scholar 

Lanitis, E., Dangaj, D., Irving, M. & Coukos, G. Mechanisms regulating T-cell infiltration and activity in solid tumors. Ann. Oncol. 28, xii18–xii32 (2017).

Article 
CAS 
PubMed 

Google Scholar 

Joyce, J. A. & Fearon, D. T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74–80 (2015).

Article 
CAS 
PubMed 

Google Scholar 

Rosenbaum, P. et al. Vaccine inoculation route modulates early immunity and consequently antigen-specific immune response. Front. Immunol. 12, 645210 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Darrah, P. A. et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature 577, 95–102 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Baharom, F. et al. Systemic vaccination induces CD8+ T cells and remodels the tumor microenvironment. Cell 185, 4317–4332.e15 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Sultan, H. et al. The route of administration dictates the immunogenicity of peptide-based cancer vaccines in mice. Cancer Immunol. Immunother. 68, 455–466 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Lynn, G. M. et al. Peptide–TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens. Nat. Biotechnol. 38, 320–332 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Ramirez-Valdez, R. A. et al. Intravenous heterologous prime-boost vaccination activates innate and adaptive immunity to promote tumor regression. Cell Rep. 42, 112599 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Verma, N. K. et al. Obstacles for T-lymphocytes in the tumour microenvironment: therapeutic challenges, advances and opportunities beyond immune checkpoint. eBioMedicine 83, 104216 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Neo, S. Y. & Lundqvist, A. The multifaceted roles of CXCL9 within the tumor microenvironment. Adv. Exp. Med. Biol. 1231, 45–51 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Zitvogel, L., Galluzzi, L., Kepp, O., Smyth, M. J. & Kroemer, G. Type I interferons in anticancer immunity. Nat. Rev. Immunol. 15, 405–414 (2015).

Article 
CAS 
PubMed 

Google Scholar 

Xue, D. et al. A tumor-specific pro-IL-12 activates preexisting cytotoxic T cells to control established tumors. Sci. Immunol. 7, eabi6899 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Cheng, S. et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell 184, 792–809.e23 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Mulder, K. et al. Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity 54, 1883–1900.e5 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Zhang, Y. et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. Cancer Cell 39, 1578–1593.e8 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Pittet, M. J., Michielin, O. & Migliorini, D. Clinical relevance of tumour-associated macrophages. Nat. Rev. Clin. Oncol. 19, 402–421 (2022).

Article 
PubMed 

Google Scholar 

Komohara, Y., Jinushi, M. & Takeya, M. Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci. 105, 1–8 (2014).

Article 
CAS 
PubMed 

Google Scholar 

Hirano, R. et al. Tissue-resident macrophages are major tumor-associated macrophage resources, contributing to early TNBC development, recurrence, and metastases. Commun. Biol. 6, 144 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Dunsmore, G. et al. Timing and location dictate monocyte fate and their transition to tumor-associated macrophages. Sci. Immunol. 9, eadk3981 (2024).

Article 
CAS 
PubMed 

Google Scholar 

Zhang, L. et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell 181, 442–459.e29 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Sharma, A., Blériot, C., Currenti, J. & Ginhoux, F. Oncofetal reprogramming in tumour development and progression. Nat. Rev. Cancer 22, 593–602 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Sharma, A. et al. Onco-fetal reprogramming of endothelial cells drives immunosuppressive macrophages in hepatocellular carcinoma. Cell 183, 377–394.e21 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Ramos, R. N. et al. Tissue-resident FOLR2+ macrophages associate with CD8+ T cell infiltration in human breast cancer. Cell 185, 1189–1207.e25 (2022).

Article 

Google Scholar 

van Elsas, M. J. et al. Immunotherapy-activated T cells recruit and skew late-stage activated M1-like macrophages that are critical for therapeutic efficacy. Cancer Cell 42, 1032–1050.e10 (2024).

Article 
PubMed 

Google Scholar 

Kiss, M., Caro, A. A., Raes, G. & Laoui, D. Systemic reprogramming of monocytes in cancer. Front. Oncol. 10, 1399 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

Ugel, S., Canè, S., Sanctis, F. D. & Bronte, V. Monocytes in the tumor microenvironment. Annu. Rev. Pathol. Mech. Dis. 16, 93–122 (2021).

Article 
CAS 

Google Scholar 

Chen, Z., Han, F., Du, Y., Shi, H. & Zhou, W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal. Transduct. Target. Ther. 8, 70 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Lin, N. & Simon, M. C. Hypoxia-inducible factors: key regulators of myeloid cells during inflammation. J. Clin. Invest. 126, 3661–3671 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Geiger, R. et al. l-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167, 829–842.e13 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hanna, R. N. et al. Patrolling monocytes control tumor metastasis to the lung. Science 350, 985–990 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Patysheva, M. et al. Monocyte programming by cancer therapy. Front. Immunol. 13, 994319 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Marciscano, A. E. & Anandasabapathy, N. The role of dendritic cells in cancer and anti-tumor immunity. Semin. Immunol. 52, 101481 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Moussion, C. & Delamarre, L. Antigen cross-presentation by dendritic cells: a critical axis in cancer immunotherapy. Semin. Immunol. 71, 101848 (2024).

Article 
CAS 
PubMed 

Google Scholar 

Wculek, S. K. et al. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20, 7–24 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Cabeza-Cabrerizo, M., Cardoso, A., Minutti, C. M., Costa, M. Pda & Reis e Sousa, C.Dendritic cells revisited. Annu. Rev. Immunol. 39, 131–166 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Ferris, S. T. et al. cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity. Nature 584, 624–629 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kvedaraite, E. & Ginhoux, F. Human dendritic cells in cancer. Sci. Immunol. 7, eabm9409 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Lin, J. H. et al. Type 1 conventional dendritic cells are systemically dysregulated early in pancreatic carcinogenesis. J. Exp. Med. 217, e20190673 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Böttcher, J. P. & Sousa, C. R. E. The role of type 1 conventional dendritic cells in cancer immunity. Trends Cancer 4, 784–792 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Meiser, P. et al. A distinct stimulatory cDC1 subpopulation amplifies CD8+ T cell responses in tumors for protective anti-cancer immunity. Cancer Cell 41, 1498–1515.e10 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Duong, E. et al. Type I interferon activates MHC class I-dressed CD11b+ conventional dendritic cells to promote protective anti-tumor CD8+ T cell immunity. Immunity 55, 308–323.e9 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Speiser, D. E., Chijioke, O., Schaeuble, K. & Münz, C. CD4+ T cells in cancer. Nat. Cancer 4, 317–329 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Michea, P. et al. Adjustment of dendritic cells to the breast-cancer microenvironment is subset specific. Nat. Immunol. 19, 885–897 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Zhou, B., Lawrence, T. & Liang, Y. The role of plasmacytoid dendritic cells in cancers. Front. Immunol. 12, 749190 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Maier, B. et al. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 580, 257–262 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Zilionis, R. et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50, 1317–1334.e10 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Zhang, Q. et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 179, 829–845.e20 (2019).

Article 
CAS 
PubMed 

Google Scholar 

LaMarche, N. M. et al. An IL-4 signalling axis in bone marrow drives pro-tumorigenic myelopoiesis. Nature 625, 166–174 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Li, J. et al. Mature dendritic cells enriched in immunoregulatory molecules (mregDCs): a novel population in the tumour microenvironment and immunotherapy target. Clin. Transl. Med. 13, e1199 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Oh, S. A. et al. PD-L1 expression by dendritic cells is a key regulator of T-cell immunity in cancer. Nat. Cancer 1, 681–691 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Leader, A. M. et al. Single-cell analysis of human non-small cell lung cancer lesions refines tumor classification and patient stratification. Cancer Cell 39, 1594–1609.e12 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Xie, Y.-J. et al. Overcoming suppressive tumor microenvironment by vaccines in solid tumor. Vaccines 11, 394 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kwart, D. et al. Cancer cell-derived type I interferons instruct tumor monocyte polarization. Cell Rep. 41, 111769 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Beck, J. D. et al. Long-lasting mRNA-encoded interleukin-2 restores CD8+ T cell neoantigen immunity in MHC class I-deficient cancers. Cancer Cell 42, 568–582.e11 (2024).

Article 
CAS 
PubMed 

Google Scholar 

Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401 (2016).

Article 
PubMed 

Google Scholar 

Salomon, N. et al. Local radiotherapy and E7 RNA-LPX vaccination show enhanced therapeutic efficacy in preclinical models of HPV16+ cancer. Cancer Immunol. Immunother. 71, 1975–1988 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Zhang, Z., Liu, X., Chen, D. & Yu, J. Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal. Transduct. Target. Ther. 7, 258 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).

Article 
CAS 
PubMed 

Google Scholar 

Hecht, J. R. et al. Abstract CT007: safety and immunogenicity of a personalized neoantigen–Listeria vaccine in cancer patients (abstract). Cancer Res. 79, CT007 (2019).

Article 

Google Scholar 

Weber, J. S. et al. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. Lancet 403, 632–644 (2024).

Article 
CAS 
PubMed 

Google Scholar 

Di, J. et al. Biodistribution and non-linear gene expression of mRNA LNPs affected by delivery route and particle size. Pharm. Res. 39, 105–114 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hotz, C. et al. Local delivery of mRNA-encoding cytokines promotes antitumor immunity and tumor eradication across multiple preclinical tumor models. Sci. Transl. Med. 13, eabc7804 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Ablasser, A. & Chen, Z. J. cGAS in action: expanding roles in immunity and inflammation. Science 363, eaat8657 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Samson, N. & Ablasser, A. The cGAS–STING pathway and cancer. Nat. Cancer 3, 1452–1463 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Lellahi, S. M. et al. GM-CSF, Flt3-L and IL-4 affect viability and function of conventional dendritic cell types 1 and 2. Front. Immunol. 13, 1058963 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Mooney, C. J., Cunningham, A., Tsapogas, P., Toellner, K.-M. & Brown, G. Selective expression of Flt3 within the mouse hematopoietic stem cell compartment. Int. J. Mol. Sci. 18, 1037 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Tang, T. et al. Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Signal. Transduct. Target. Ther. 6, 72 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Diamond, M. S. et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med. 208, 1989–2003 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Li, C. et al. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nat. Immunol. 23, 543–555 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Liao, J. et al. Type I IFNs repolarized a CD169+ macrophage population with anti-tumor potentials in hepatocellular carcinoma. Mol. Ther. 30, 632–643 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Gajewski, T. F., Louahed, J. & Brichard, V. G. Gene signature in melanoma associated with clinical activity: a potential clue to unlock cancer immunotherapy. Cancer J. 16, 399–403 (2010).

Article 
CAS 
PubMed 

Google Scholar 

Zeestraten, E. C. M. et al. Addition of interferon‐α to the p53‐SLP® vaccine results in increased production of interferon‐γ in vaccinated colorectal cancer patients: a phase I/II clinical trial. Int. J. Cancer 132, 1581–1591 (2013).

Article 
CAS 
PubMed 

Google Scholar 

Cao, X. et al. Next generation of tumor-activating type I IFN enhances anti-tumor immune responses to overcome therapy resistance. Nat. Commun. 12, 5866 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Palma, M. D. et al. Tumor-targeted interferon-α delivery by tie2-expressing monocytes inhibits tumor growth and metastasis. Cancer Cell 14, 299–311 (2008).

Article 
PubMed 

Google Scholar 

Pogue, S. L. et al. Targeting attenuated interferon-α to myeloma cells with a CD38 antibody induces potent tumor regression with reduced off-target activity. PLoS ONE 11, e0162472 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Rolfo, C., Giovannetti, E., Martinez, P., McCue, S. & Naing, A. Applications and clinical trial landscape using Toll-like receptor agonists to reduce the toll of cancer. NPJ Precis. Oncol. 7, 26 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kyi, C. et al. Therapeutic immune modulation against solid cancers with intratumoral poly-ICLC: a pilot trial. Clin. Cancer Res. 24, 4937–4948 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hammerich, L. et al. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat. Med. 25, 814–824 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Hu, Z. et al. Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma. Nat. Med. 27, 515–525 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Keskin, D. B. et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565, 234–239 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Everson, R. G. et al. TLR agonists polarize interferon responses in conjunction with dendritic cell vaccination in malignant glioma: a randomized phase II trial. Nat. Commun. 15, 3882 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Williams, B. B., Paul, R. T. & Lerner, A. M. Pharmacokinetics of interferon in blood, cerebrospinal fluid, and brain after administration of modified polyriboinosinic-polyribocytidylic acid and amphotericin B. J. Infect. Dis. 146, 819–825 (1982).

Article 
CAS 
PubMed 

Google Scholar 

Ye, J. et al. Toll-like receptor 7/8 agonist R848 alters the immune tumor microenvironment and enhances SBRT-induced antitumor efficacy in murine models of pancreatic cancer. J. Immunother. Cancer 10, e004784 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Mullins, S. R. et al. Intratumoral immunotherapy with TLR7/8 agonist MEDI9197 modulates the tumor microenvironment leading to enhanced activity when combined with other immunotherapies. J. Immunother. Cancer 7, 244 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Yoo, Y. J. et al. Nanoengineered macrophages armed with TLR7/8 agonist enhance remodeling of immunosuppressive tumor microenvironment. Small 20, e2307694 (2024).

Article 
PubMed 

Google Scholar 

Woo, S.-R., Corrales, L. & Gajewski, T. F. The STING pathway and the T cell-inflamed tumor microenvironment. Trends Immunol. 36, 250–256 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Corrales, L. et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 11, 1018–1030 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Sivick, K. E. et al. Magnitude of therapeutic STING activation determines CD8+ T cell-mediated anti-tumor immunity. Cell Rep. 25, 3074–3085.e5 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Fu, J. et al. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci. Transl. Med. 7, 283ra52 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar 

He, Y. et al. STING protein‐based in situ vaccine synergizes CD4+ T, CD8+ T, and NK cells for tumor eradication. Adv. Healthc. Mater. 12, e2300688 (2023).

Article 
PubMed 

Google Scholar 

Meric-Bernstam, F. et al. Combination of the STING agonist MIW815 (ADU-S100) and PD-1 inhibitor spartalizumab in advanced/metastatic solid tumors or lymphomas: an open-label, multicenter, phase Ib study. Clin. Cancer Res. 29, 110–121 (2022).

Article 

Google Scholar 

Larkin, B. et al. Cutting edge: activation of STING in T cells induces type I IFN responses and cell death. J. Immunol. 199, 397–402 (2017).

Article 
CAS 
PubMed 

Google Scholar 

Cerboni, S. et al. Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. J. Exp. Med. 214, 1769–1785 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Zhu, Y. et al. STING: a master regulator in the cancer-immunity cycle. Mol. Cancer 18, 152 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Smith, K. E., Deronic, A., Hägerbrand, K., Norlén, P. & Ellmark, P. Rationale and clinical development of CD40 agonistic antibodies for cancer immunotherapy. Expert. Opin. Biol. Ther. 21, 1635–1646 (2021).

Article 

Google Scholar 

Morrison, A. H., Diamond, M. S., Hay, C. A., Byrne, K. T. & Vonderheide, R. H. Sufficiency of CD40 activation and immune checkpoint blockade for T cell priming and tumor immunity. Proc. Natl Acad. Sci. USA 117, 8022–8031 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wattenberg, M. M. et al. Cancer immunotherapy via synergistic coactivation of myeloid receptors CD40 and Dectin-1. Sci. Immunol. 8, eadj5097 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Salomon, R. & Dahan, R. Next generation CD40 agonistic antibodies for cancer immunotherapy. Front. Immunol. 13, 940674 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Soto, M. et al. Neoadjuvant CD40 agonism remodels the tumor immune microenvironment in locally advanced esophageal/gastroesophageal junction cancer. Cancer Res. Commun. 4, 200–212 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Anandasabapathy, N. et al. Efficacy and safety of CDX-301, recombinant human Flt3L, at expanding dendritic cells and hematopoietic stem cells in healthy human volunteers. Bone Marrow Transpl. 50, 924–930 (2015).

Article 
CAS 

Google Scholar 

Maraskovsky, E. et al. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J. Exp. Med. 184, 1953–1962 (1996).

Article 
CAS 
PubMed 

Google Scholar 

Sánchez-Paulete, A. R. et al. Cancer immunotherapy with immunomodulatory anti-CD137 and anti–PD-1 monoclonal antibodies requires BATF3-dependent dendritic cells. Cancer Discov. 6, 71–79 (2016).

Article 
PubMed 

Google Scholar 

Broz, M. L. et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26, 638–652 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Bhardwaj, N. et al. Flt3 ligand augments immune responses to anti-DEC-205-NY-ESO-1 vaccine through expansion of dendritic cell subsets. Nat. Cancer 1, 1204–1217 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Cannarile, M. A. et al. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J. Immunother. Cancer 5, 53 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Cassetta, L. & Pollard, J. W. Targeting macrophages: therapeutic approaches in cancer. Nat. Rev. Drug Discov. 17, 887–904 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Mantovani, A., Allavena, P., Marchesi, F. & Garlanda, C. Macrophages as tools and targets in cancer therapy. Nat. Rev. Drug Discov. 21, 799–820 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Timperi, E. et al. Lipid-associated macrophages are induced by cancer-associated fibroblasts and mediate immune suppression in breast cancer. Cancer Res. 82, 3291–3306 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Wolf, E. M., Fingleton, B. & Hasty, A. H. The therapeutic potential of TREM2 in cancer. Front. Oncol. 12, 984193 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Katzenelenbogen, Y. et al. Coupled scRNA-seq and intracellular protein activity reveal an immunosuppressive role of TREM2 in cancer. Cell 182, 872–885.e19 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Binnewies, M. et al. Targeting TREM2 on tumor-associated macrophages enhances immunotherapy. Cell Rep. 37, 109844 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Molgora, M. et al. TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell 182, 886–900.e17 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Park, M. D. et al. TREM2 macrophages drive NK cell paucity and dysfunction in lung cancer. Nat. Immunol. 24, 792–801 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Patnaik, A. et al. A phase 1a dose-escalation study of PY314, a TREM2 (triggering receptor expressed on macrophages 2) targeting monoclonal antibody (abstract). J. Clin. Oncol. 40, 2648 (2022).

Article 

Google Scholar 

Chan, M. K.-K. et al. Transforming growth factor-β signaling: from tumor microenvironment to anticancer therapy. Explor. Target. Anti-tumor Ther. 4, 316–343 (2023).

Article 
CAS 

Google Scholar 

Wischhusen, J., Melero, I. & Fridman, W. H. Growth/differentiation factor-15 (GDF-15): from biomarker to novel targetable immune checkpoint. Front. Immunol. 11, 951 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Huynh, L. K., Hipolito, C. J. & Dijke, Pten A perspective on the development of TGF-β inhibitors for cancer treatment. Biomolecules 9, 743 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kim, B.-G., Malek, E., Choi, S. H., Ignatz-Hoover, J. J. & Driscoll, J. J. Novel therapies emerging in oncology to target the TGF-β pathway. J. Hematol. Oncol. 14, 55 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Ratnam, N. M. et al. NF-κB regulates GDF-15 to suppress macrophage surveillance during early tumor development. J. Clin. Invest. 127, 3796–3809 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Urakawa, N. et al. GDF15 derived from both tumor-associated macrophages and esophageal squamous cell carcinomas contributes to tumor progression via Akt and Erk pathways. Lab. Invest. 95, 491–503 (2015).

Article 
CAS 
PubMed 

Google Scholar 

Hong, G. et al. Plasma GDF15 levels associated with circulating immune cells predict the efficacy of PD-1/PD-L1 inhibitor treatment and prognosis in patients with advanced non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 149, 159–171 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Haake, M. et al. Tumor-derived GDF-15 blocks LFA-1 dependent T cell recruitment and suppresses responses to anti-PD-1 treatment. Nat. Commun. 14, 4253 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Bermejo, I. M. et al. Initial results from the phase 2A trial of visugromab (CTL-002) + nivolumab in advanced/metastatic anti-PD1/-L1 relapsed/refractory solid tumors (The GDFATHER-TRIAL). J. Clin. Oncol. 41, 2501 (2023).

Article 

Google Scholar 

Bindea, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39, 782–795 (2013).

Article 
CAS 
PubMed 

Google Scholar 

Thorsson, V. et al. The immune landscape of cancer. Immunity 51, 411–412 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Fitzgerald, B. G. et al. Abstract CT205: a phase I/Ib trial of intratumoral Poly-ICLC in resectable malignant pleural mesothelioma (abstract). Cancer Res. 82, CT205 (2022).

Article 

Google Scholar 

Klebanoff, C. A., Acquavella, N., Yu, Z. & Restifo, N. P. Therapeutic cancer vaccines: are we there yet? Immunol. Rev. 239, 27–44 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Rosenberg, S. A., Yang, J. C. & Restifo, N. P. Cancer immunotherapy: moving beyond current vaccines. Nat. Med. 10, 909–915 (2004).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Lynn, G. M. et al. In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. Nat. Biotechnol. 33, 1201–1210 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Zelba, H. et al. Adjuvant treatment for breast cancer patients using individualized neoantigen peptide vaccination—a retrospective observation. Vaccines 10, 1882 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Pant, S. et al. Lymph-node-targeted, mKRAS-specific amphiphile vaccine in pancreatic and colorectal cancer: the phase 1 AMPLIFY-201 trial. Nat. Med. 30, 531–542 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kuai, R., Ochyl, L. J., Bahjat, K. S., Schwendeman, A. & Moon, J. J. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat. Mater. 16, 489–496 (2017).

Article 
CAS 
PubMed 

Google Scholar 

Rosa, S. S., Prazeres, D. M. F., Azevedo, A. M. & Marques, M. P. C. mRNA vaccines manufacturing: challenges and bottlenecks. Vaccine 39, 2190–2200 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Tahtinen, S. et al. IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. Nat. Immunol. 23, 532–542 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Gebre, M. S. et al. Optimization of non-coding regions for a non-modified mRNA COVID-19 vaccine. Nature 601, 410–414 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Morais, P., Adachi, H. & Yu, Y.-T. The critical contribution of pseudouridine to mRNA COVID-19 vaccines. Front. Cell Dev. Biol. 9, 789427 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Pardi, N. et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 543, 248–251 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Comes, J. D. G., Pijlman, G. P. & Hick, T. A. H. Rise of the RNA machines—self-amplification in mRNA vaccine design. Trends Biotechnol. 41, 1417–1429 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Amaya, L. et al. Circular RNA vaccine induces potent T cell responses. Proc. Natl Acad. Sci. USA 120, e2302191120 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Naka, T. et al. Tumor vaccine therapy against recrudescent tumor using dendritic cells simultaneously transfected with tumor RNA and granulocyte macrophage colony‐stimulating factor RNA. Cancer Sci. 99, 407–413 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Minkis, K. et al. Type 2 bias of T cells expanded from the blood of melanoma patients switched to type 1 by IL-12p70 mRNA-transfected dendritic cells. Cancer Res. 68, 9441–9450 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Bergh, J. Vden et al. Transpresentation of interleukin-15 by IL-15/IL-15Rα mRNA-engineered human dendritic cells boosts antitumoral natural killer cell activity. Oncotarget 6, 44123–44133 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar 

Yang, J. et al. Intratumoral delivered novel circular mRNA encoding cytokines for immune modulation and cancer therapy. Mol. Ther. Nucleic Acids 30, 184–197 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Chen, S. et al. Nanotechnology-based mRNA vaccines. Nat. Rev. Methods Prim. 3, 63 (2023).

Article 
CAS 

Google Scholar 

Kiaie, S. H. et al. Recent advances in mRNA-LNP therapeutics: immunological and pharmacological aspects. J. Nanobiotechnol. 20, 276 (2022).

Article 
CAS 

Google Scholar 

Alameh, M.-G. et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 54, 2877–2892.e7 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Coughlan, L. Factors which contribute to the immunogenicity of non-replicating adenoviral vectored vaccines. Front. Immunol. 11, 909 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Atmar, R. L. et al. Homologous and heterologous COVID-19 booster vaccinations. N. Engl. J. Med. 386, 1046–1057 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Fausther-Bovendo, H. & Kobinger, G. P. Pre-existing immunity against Ad vectors. Hum. Vaccines Immunother. 10, 2875–2884 (2014).

Article 

Google Scholar 

Reyes-Sandoval, A. et al. Mixed vector immunization with recombinant adenovirus and MVA can improve vaccine efficacy while decreasing antivector immunity. Mol. Ther. 20, 1633–1647 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Harper, D. M. & DeMars, L. R. HPV vaccines—a review of the first decade. Gynecol. Oncol. 146, 196–204 (2017).

Article 
CAS 
PubMed 

Google Scholar 

Banister, C. E., Liu, C., Pirisi, L., Creek, K. E. & Buckhaults, P. J. Identification and characterization of HPV-independent cervical cancers. Oncotarget 8, 13375–13386 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Tran, E., Urba, W. J. & Leidner, R. Neoantigen T-cell receptor gene therapy in pancreatic cancer. N. Engl. J. Med. 387, 573–574 (2022).

Article 

Google Scholar 

Tran, E. et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344, 641–645 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Paston, S. J., Brentville, V. A., Symonds, P. & Durrant, L. G. Cancer vaccines, adjuvants, and delivery systems. Front. Immunol. 12, 627932 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Diefenbach, C. S. M. et al. Safety and immunogenicity study of NY-ESO-1b peptide and montanide ISA-51 vaccination of patients with epithelial ovarian cancer in high-risk first remission. Clin. Cancer Res. 14, 2740–2748 (2008).

Article 
CAS 
PubMed 

Google Scholar 

Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Sabado, R. L. et al. Resiquimod as an immunologic adjuvant for NY-ESO-1 protein vaccination in patients with high-risk melanoma. Cancer Immunol. 3, 278–287 (2015).

Article 
CAS 

Google Scholar 

Karbach, J. et al. Efficient in vivo priming by vaccination with recombinant NY-ESO-1 protein and CpG in antigen naïve prostate cancer patients. Clin. Cancer Res. 17, 861–870 (2011).

Article 
CAS 
PubMed 

Google Scholar 

Rojas, L. A. et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618, 144–150 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Liang, F. et al. Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques. Mol. Ther. 25, 2635–2647 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Ewer, K. J. et al. Viral vectors as vaccine platforms: from immunogenicity to impact. Curr. Opin. Immunol. 41, 47–54 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Balachandran, V. P. et al. Phase I trial of adjuvant autogene cevumeran, an individualized mRNA neoantigen vaccine, for pancreatic ductal adenocarcinoma (abstract). J. Clin. Oncol. 40, 2516 (2022).

Article 

Google Scholar 

Palmer, C. D. et al. Individualized, heterologous chimpanzee adenovirus and self-amplifying mRNA neoantigen vaccine for advanced metastatic solid tumors: phase 1 trial interim results. Nat. Med. 28, 1619–1629 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Lopez, J. et al. Autogene cevumeran with or without atezolizumab in advanced solid tumors: a phase 1 trial. Nat. Med. (in the press).



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleSignificant Events in Sports: Summit League Guide Revealed
Next Article U.S. stock futures rise on tech sector earnings expectations
Paul E.
  • Website

Related Posts

Kentucky leaders emphasize whooping cough vaccination

October 31, 2024

Safety, efficacy and immunogenicity of aerosolized Ad5-nCoV COVID-19 vaccine in a non-inferiority randomized controlled trial

October 31, 2024

Trust is important, but increasing vaccination rates also requires three things

October 31, 2024
Leave A Reply Cancel Reply

Latest Posts

Health Canada approves Novartis’ KISQALI® for HR+/HER2- early breast cancer patients at high risk of recurrence

Sheriff, county lawyer seeking mental health funds at Minnesota State Capitol

Chronic absences have not disappeared. Research shows that poor children are most hurt.

Transport Secretary reveals overhaul of aging pneumatic transport systems

Latest Posts

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Welcome to Subjectional!

At Subjectional, we believe that informed opinions are the foundation of a vibrant society. Our mission is to provide insightful, engaging, and balanced information across a diverse range of topics that matter to you. Whether you’re interested in the latest developments in health, navigating the complexities of politics, staying updated on sports, exploring technological advancements, or advancing your career, we’ve got you covered.

Facebook X (Twitter) Instagram Pinterest YouTube

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Facebook X (Twitter) Instagram Pinterest
  • Home
  • About Us
  • Advertise with Us
  • Contact us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 subjectional. Designed by subjectional.

Type above and press Enter to search. Press Esc to cancel.