Close Menu
  • Home
  • Vaccines
  • Politics
  • Health
  • Tech
  • Sports
  • Research
  • Fitness
  • Careers
What's Hot

Health Canada approves Novartis’ KISQALI® for HR+/HER2- early breast cancer patients at high risk of recurrence

Sheriff, county lawyer seeking mental health funds at Minnesota State Capitol

Chronic absences have not disappeared. Research shows that poor children are most hurt.

Facebook X (Twitter) Instagram
subjectional.com
Subscribe
  • Home
  • Vaccines
  • Politics
  • Health
  • Tech
  • Sports
  • Research
  • Fitness
  • Careers
subjectional.com
Home » Immune correlates of protection as a game changer in tuberculosis vaccine development
Vaccines

Immune correlates of protection as a game changer in tuberculosis vaccine development

Paul E.By Paul E.October 30, 2024No Comments26 Mins Read
Share Facebook Twitter Pinterest Copy Link Telegram LinkedIn Tumblr Email
Share
Facebook Twitter LinkedIn Pinterest Email


World Health Organization. Global Tuberculosis Report. (2023).

Targeted tuberculin testing and treatment of latent tuberculosis infection. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors, July 1999. This is a Joint Statement of the American Thoracic Society (ATS) and the Centers for Disease Control and Prevention (CDC). This statement was endorsed by the Council of the Infectious Diseases Society of America. (IDSA), September 1999, and the sections of this statement. Am. J. Respir. Crit. Care Med. 161, S221–S247 (2000).

Google Scholar 

Lillebaek, T. et al. Molecular evidence of endogenous reactivation of Mycobacterium tuberculosis after 33 years of latent infection. J. Infect. Dis. 185, 401–404 (2002).

Article 
CAS 
PubMed 

Google Scholar 

Mangtani, P. et al. Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin. Infect. Dis. 58, 470–480 (2014).

Article 
PubMed 

Google Scholar 

Lai, R., Ogunsola, A. F., Rakib, T. & Behar, S. M. Key advances in vaccine development for tuberculosis-success and challenges. NPJ Vaccines 8, 158 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Bhatt, K., Verma, S., Ellner, J. J. & Salgame, P. Quest for correlates of protection against tuberculosis. Clin. Vaccin. Immunol. 22, 258–266 (2015).

Article 
CAS 

Google Scholar 

Britto, C. & Alter, G. The next frontier in vaccine design: blending immune correlates of protection into rational vaccine design. Curr. Opin. Immunol. 78, 102234 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Escudero-Perez, B., Lawrence, P. & Castillo-Olivares, J. Immune correlates of protection for SARS-CoV-2, Ebola and Nipah virus infection. Front. Immunol. 14, 1156758 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Chandra, P., Grigsby, S. J. & Philips, J. A. Immune evasion and provocation by Mycobacterium tuberculosis. Nat. Rev. Microbiol 20, 750–766 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Yang, J., Zhang, L., Qiao, W. & Luo, Y. Mycobacterium tuberculosis: pathogenesis and therapeutic targets. MedComm (2020) 4, e353 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Prezzemolo, T. et al. Functional signatures of human CD4 and CD8 T cell responses to Mycobacterium tuberculosis. Front. Immunol. 5, 180 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar 

Derrick, S. C., Yabe, I. M., Yang, A. & Morris, S. L. Vaccine-induced anti-tuberculosis protective immunity in mice correlates with the magnitude and quality of multifunctional CD4 T cells. Vaccine 29, 2902–2909 (2011).

Article 
CAS 
PubMed 

Google Scholar 

Sakai, S., Mayer-Barber, K. D. & Barber, D. L. Defining features of protective CD4 T cell responses to Mycobacterium tuberculosis. Curr. Opin. Immunol. 29, 137–142 (2014).

Article 
CAS 
PubMed 

Google Scholar 

Flynn, J. L. et al. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 178, 2249–2254 (1993).

Article 
CAS 
PubMed 

Google Scholar 

Cooper, A. M. et al. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J. Exp. Med. 178, 2243–2247 (1993).

Article 
CAS 
PubMed 

Google Scholar 

Sakai, S. et al. CD4 T cell-derived IFN-gamma plays a minimal role in control of pulmonary Mycobacterium tuberculosis infection and must be actively repressed by PD-1 to prevent lethal disease. PLoS Pathog. 12, e1005667 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

McShane, H., Brookes, R., Gilbert, S. C. & Hill, A. V. Enhanced immunogenicity of CD4(+) t-cell responses and protective efficacy of a DNA-modified vaccinia virus Ankara prime-boost vaccination regimen for murine tuberculosis. Infect. Immun. 69, 681–686 (2001).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Williams, A. et al. Boosting with poxviruses enhances Mycobacterium bovis BCG efficacy against tuberculosis in guinea pigs. Infect. Immun. 73, 3814–3816 (2005).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Vordermeier, H. M. et al. Cellular immune responses induced in cattle by heterologous prime-boost vaccination using recombinant viruses and bacille Calmette-Guerin. Immunology 112, 461–470 (2004).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Verreck, F. A. et al. MVA.85A boosting of BCG and an attenuated, phoP deficient M. tuberculosis vaccine both show protective efficacy against tuberculosis in Rhesus macaques. PLoS ONE 4, e5264 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar 

McShane, H. et al. Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat. Med. 10, 1240–1244 (2004).

Article 
CAS 
PubMed 

Google Scholar 

Scriba, T. J. et al. Modified vaccinia Ankara-expressing Ag85A, a novel tuberculosis vaccine, is safe in adolescents and children, and induces polyfunctional CD4+ T cells. Eur. J. Immunol. 40, 279–290 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Tameris, M. D. et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 381, 1021–1028 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Khader, S. A. et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat. Immunol. 8, 369–377 (2007).

Article 
CAS 
PubMed 

Google Scholar 

Okamoto Yoshida, Y. et al. Essential role of IL-17A in the formation of a mycobacterial infection-induced granuloma in the lung. J. Immunol. 184, 4414–4422 (2010).

Article 
CAS 
PubMed 

Google Scholar 

Shanmugasundaram, U. et al. Pulmonary Mycobacterium tuberculosis control associates with CXCR3- and CCR6-expressing antigen-specific Th1 and Th17 cell recruitment. JCI Insight 5, e137858 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

Ottenhoff, T. H. New pathways of protective and pathological host defense to mycobacteria. Trends Microbiol. 20, 419–428 (2012).

Article 
CAS 
PubMed 

Google Scholar 

Miranda, N. & Hoyer, K. K. Coccidioidomycosis granulomas informed by other diseases: advancements, gaps, and challenges. J Fungi (Basel) 9, 650 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Ogongo, P. et al. Tissue-resident-like CD4+ T cells secreting IL-17 control Mycobacterium tuberculosis in the human lung. J. Clin. Invest. 131, e142014 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Freches, D. et al. Mice genetically inactivated in interleukin-17A receptor are defective in long-term control of Mycobacterium tuberculosis infection. Immunology 140, 220–231 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Dijkman, K. et al. Pulmonary MTBVAC vaccination induces immune signatures previously correlated with prevention of tuberculosis infection. Cell Rep. Med. 2, 100187 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Jong, R. M. et al. Mucosal vaccination with cyclic dinucleotide adjuvants induces effective T cell homing and IL-17-dependent protection against Mycobacterium tuberculosis infection. J. Immunol. 208, 407–419 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Aguilo, N. et al. Pulmonary but not subcutaneous delivery of BCG vaccine confers protection to tuberculosis-susceptible mice by an interleukin 17-dependent mechanism. J. Infect. Dis. 213, 831–839 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Counoupas, C. et al. Mucosal delivery of a multistage subunit vaccine promotes development of lung-resident memory T cells and affords interleukin-17-dependent protection against pulmonary tuberculosis. NPJ Vaccines 5, 105 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Butcher, D. L. & Deng, H. W. Hypothetical SisterKiller. Nature 369, 26 (1994).

Article 
CAS 
PubMed 

Google Scholar 

Wu, J. et al. Incorporation of immunostimulatory motifs in the transcribed region of a plasmid DNA vaccine enhances Th1 immune responses and therapeutic effect against Mycobacterium tuberculosis in mice. Vaccine 29, 7624–7630 (2011).

Article 
CAS 
PubMed 

Google Scholar 

Desvignes, L. & Ernst, J. D. Interferon-gamma-responsive nonhematopoietic cells regulate the immune response to Mycobacterium tuberculosis. Immunity 31, 974–985 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Blanco, F. C. et al. Increased IL-17 expression is associated with pathology in a bovine model of tuberculosis. Tuberculosis 91, 57–63 (2011).

Article 
CAS 
PubMed 

Google Scholar 

Jurado, J. O. et al. IL-17 and IFN-gamma expression in lymphocytes from patients with active tuberculosis correlates with the severity of the disease. J. Leukoc. Biol. 91, 991–1002 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Cruz, A. et al. Pathological role of interleukin 17 in mice subjected to repeated BCG vaccination after infection with Mycobacterium tuberculosis. J. Exp. Med. 207, 1609–1616 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kaufmann, S. H. Immunity to intracellular bacteria. Annu. Rev. Immunol. 11, 129–163 (1993).

Article 
CAS 
PubMed 

Google Scholar 

Ali, A. et al. Recent advancement, immune responses, and mechanism of action of various vaccines against intracellular bacterial infections. Life Sci. 314, 121332 (2023).

Article 
CAS 
PubMed 

Google Scholar 

van Pinxteren, L. A., Cassidy, J. P., Smedegaard, B. H., Agger, E. M. & Andersen, P. Control of latent Mycobacterium tuberculosis infection is dependent on CD8 T cells. Eur. J. Immunol. 30, 3689–3698 (2000).

Article 
PubMed 

Google Scholar 

Sousa, A. O. et al. Relative contributions of distinct MHC class I-dependent cell populations in protection to tuberculosis infection in mice. Proc. Natl Acad. Sci. USA 97, 4204–4208 (2000).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Villarreal-Ramos, B. et al. Investigation of the role of CD8+ T cells in bovine tuberculosis in vivo. Infect. Immun. 71, 4297–4303 (2003).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Chen, C. Y. et al. A critical role for CD8 T cells in a nonhuman primate model of tuberculosis. PLoS Pathog. 5, e1000392 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar 

Wang, J., Santosuosso, M., Ngai, P., Zganiacz, A. & Xing, Z. Activation of CD8 T cells by mycobacterial vaccination protects against pulmonary tuberculosis in the absence of CD4 T cells. J. Immunol. 173, 4590–4597 (2004).

Article 
CAS 
PubMed 

Google Scholar 

Wu, Y., Woodworth, J. S., Shin, D. S., Morris, S. & Behar, S. M. Vaccine-elicited 10-kilodalton culture filtrate protein-specific CD8+ T cells are sufficient to mediate protection against Mycobacterium tuberculosis infection. Infect. Immun. 76, 2249–2255 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hu, Z. et al. Sendai virus mucosal vaccination establishes lung-resident memory CD8 T cell immunity and boosts BCG-primed protection against TB in mice. Mol. Ther. 25, 1222–1233 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Moliva, J. I. et al. Exposure to human alveolar lining fluid enhances Mycobacterium bovis BCG vaccine efficacy against Mycobacterium tuberculosis infection in a CD8(+) T-cell-dependent manner. Mucosal Immunol. 11, 968–978 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Vasilyev, K. et al. Enhancement of the local CD8(+) T-cellular immune response to Mycobacterium tuberculosis in BCG-primed mice after intranasal administration of influenza vector vaccine carrying TB10.4 and HspX antigens. Vaccines (Basel) 9, 1273 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Baldwin, S. L. et al. Protection against tuberculosis with homologous or heterologous protein/vector vaccine approaches is not dependent on CD8+ T cells. J. Immunol. 191, 2514–2525 (2013).

Article 
CAS 
PubMed 

Google Scholar 

Lindenstrom, T., Aagaard, C., Christensen, D., Agger, E. M. & Andersen, P. High-frequency vaccine-induced CD8(+) T cells specific for an epitope naturally processed during infection with Mycobacterium tuberculosis do not confer protection. Eur. J. Immunol. 44, 1699–1709 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hu, Z. et al. A multistage Sendai virus vaccine incorporating latency-associated antigens induces protection against acute and latent tuberculosis. Emerg. Microbes Infect. 13, 2300463 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar 

Ashhurst, A. S. et al. PLGA particulate subunit tuberculosis vaccines promote humoral and Th17 responses but do not enhance control of Mycobacterium tuberculosis infection. PLoS ONE 13, e0194620 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Lu, L. L. et al. IFN-gamma-independent immune markers of Mycobacterium tuberculosis exposure. Nat. Med. 25, 977–987 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Davies, L. R. L. et al. Age and sex influence antibody profiles associated with tuberculosis progression. Nat. Microbiol. 9, 1513–1525 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Ishida, E. et al. Mucosal and systemic antigen-specific antibody responses correlate with protection against active tuberculosis in nonhuman primates. EBioMedicine 99, 104897 (2024).

Article 
CAS 
PubMed 

Google Scholar 

Chen, T. et al. Capsular glycan recognition provides antibody-mediated immunity against tuberculosis. J. Clin. Invest. 130, 1808–1822 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Lu, L. L. et al. A functional role for antibodies in tuberculosis. Cell 167, 433–443 e414 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

du Plessis, W. J. et al. The functional response of B cells to antigenic stimulation: a preliminary report of latent tuberculosis. PLoS ONE 11, e0152710 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Dubois Cauwelaert, N. et al. Antigen presentation by B cells guides programing of memory CD4(+) T-cell responses to a TLR4-agonist containing vaccine in mice. Eur. J. Immunol. 46, 2719–2729 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Phuah, J. Y., Mattila, J. T., Lin, P. L. & Flynn, J. L. Activated B cells in the granulomas of nonhuman primates infected with Mycobacterium tuberculosis. Am. J. Pathol. 181, 508–514 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hunter, L., Hingley-Wilson, S., Stewart, G. R., Sharpe, S. A. & Salguero, F. J. Dynamics of macrophage, T and B cell infiltration within pulmonary granulomas induced by Mycobacterium tuberculosis in two non-human primate models of aerosol infection. Front. Immunol. 12, 776913 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Carpenter, S. M. & Lu, L. L. Leveraging antibody, B cell and Fc receptor interactions to understand heterogeneous immune responses in tuberculosis. Front Immunol. 13, 830482 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Stewart, P. et al. Role of B cells in Mycobacterium tuberculosis infection. Vaccines (Basel) 11, 955 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Rijnink, W. F., Ottenhoff, T. H. M. & Joosten, S. A. B-cells and antibodies as contributors to effector immune responses in tuberculosis. Front. Immunol. 12, 640168 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Achkar, J. M., Chan, J. & Casadevall, A. B cells and antibodies in the defense against Mycobacterium tuberculosis infection. Immunol. Rev. 264, 167–181 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Schenkel, J. M. & Masopust, D. Tissue-resident memory T cells. Immunity 41, 886–897 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Mueller, S. N. & Mackay, L. K. Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. 16, 79–89 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Beverley, P. C., Sridhar, S., Lalvani, A. & Tchilian, E. Z. Harnessing local and systemic immunity for vaccines against tuberculosis. Mucosal Immunol. 7, 20–26 (2014).

Article 
CAS 
PubMed 

Google Scholar 

Urdahl, K. B. Understanding and overcoming the barriers to T cell-mediated immunity against tuberculosis. Semin. Immunol. 26, 578–587 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hu, Z., Lu, S. H., Lowrie, D. B. & Fan, X. Y. Research advances for virus-vectored tuberculosis vaccines and latest findings on tuberculosis vaccine development. Front. Immunol. 13, 895020 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Sakai, S. et al. Cutting edge: control of Mycobacterium tuberculosis infection by a subset of lung parenchyma-homing CD4 T cells. J. Immunol. 192, 2965–2969 (2014).

Article 
CAS 
PubMed 

Google Scholar 

Torrado, E. et al. Interleukin 27R regulates CD4+ T cell phenotype and impacts protective immunity during Mycobacterium tuberculosis infection. J. Exp. Med 212, 1449–1463 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hu, Z. et al. The role of KLRG1 in human CD4+ T-cell immunity against tuberculosis. J. Infect. Dis. 217, 1491–1503 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Perdomo, C. et al. Mucosal BCG vaccination induces protective lung-resident memory T cell populations against tuberculosis. mBio 7, e01686-16 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Woodworth, J. S. et al. Subunit vaccine H56/CAF01 induces a population of circulating CD4 T cells that traffic into the Mycobacterium tuberculosis-infected lung. Mucosal Immunol. 10, 555–564 (2017).

Article 
CAS 
PubMed 

Google Scholar 

Carpenter, S. M., Yang, J. D., Lee, J., Barreira-Silva, P. & Behar, S. M. Vaccine-elicited memory CD4+ T cell expansion is impaired in the lungs during tuberculosis. PLoS Pathog. 13, e1006704 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Jeyanathan, M. et al. CXCR3 signaling is required for restricted homing of parenteral tuberculosis vaccine-induced T cells to both the lung parenchyma and airway. J. Immunol. 199, 2555–2569 (2017).

Article 
CAS 
PubMed 

Google Scholar 

Lindenstrom, T. et al. T cells primed by live mycobacteria versus a tuberculosis subunit vaccine exhibit distinct functional properties. EBioMedicine 27, 27–39 (2018).

Article 
PubMed 

Google Scholar 

Darrah, P. A. et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature 577, 95–102 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Netea, M. G., Quintin, J. & van der Meer, J. W. Trained immunity: a memory for innate host defense. Cell Host Microbe 9, 355–361 (2011).

Article 
CAS 
PubMed 

Google Scholar 

Netea, M. G. & van der Meer, J. W. Trained immunity: an ancient way of remembering. Cell Host Microbe 21, 297–300 (2017).

Article 
CAS 
PubMed 

Google Scholar 

Hu, Z., Lu, S. H., Lowrie, D. B. & Fan, X. Y. Trained immunity: a Yin-Yang balance. MedComm (2020) 3, e121 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Cheng, S. H. et al. Demonstration of increased anti-mycobacterial activity in peripheral blood monocytes after BCG vaccination in British school children. Clin. Exp. Immunol. 74, 20–25 (1988).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Cheng, S. H. et al. Monocyte antimycobacterial activity before and after Mycobacterium bovis BCG vaccination in Chingleput, India, and London, United Kingdom. Infect. Immun. 61, 4501–4503 (1993).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kleinnijenhuis, J. et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc. Natl Acad. Sci. USA 109, 17537–17542 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kleinnijenhuis, J. et al. Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity. J. Innate Immun. 6, 152–158 (2014).

Article 
CAS 
PubMed 

Google Scholar 

Arts, R. J. W. et al. Immunometabolic pathways in BCG-induced trained immunity. Cell Rep. 17, 2562–2571 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kaufmann, E. et al. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 172, 176–190.e119 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Giamarellos-Bourboulis, E. J. et al. Activate: randomized clinical trial of BCG vaccination against infection in the elderly. Cell 183, 315–323.e319 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Xu, J. C. et al. Multi-omics analysis reveals that linoleic acid metabolism is associated with variations of trained immunity induced by distinct BCG strains. Sci. Adv. 10, eadk8093 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Cohen, S. B. et al. Alveolar macrophages provide an early mycobacterium tuberculosis niche and initiate dissemination. Cell Host Microbe 24, 439–446 e434 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Rothchild, A. C. et al. Alveolar macrophages generate a noncanonical NRF2-driven transcriptional response to Mycobacterium tuberculosis in vivo. Sci. Immunol. 4, eaaw6693 (2019).

Rajaram, M. V., Ni, B., Dodd, C. E. & Schlesinger, L. S. Macrophage immunoregulatory pathways in tuberculosis. Semin. Immunol. 26, 471–485 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Lovey, A. et al. Early alveolar macrophage response and IL-1R-dependent T cell priming determine transmissibility of Mycobacterium tuberculosis strains. Nat. Commun. 13, 884 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Mai, D. et al. Exposure to Mycobacterium remodels alveolar macrophages and the early innate response to Mycobacterium tuberculosis infection. PLoS Pathog. 20, e1011871 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Yao, Y. et al. Induction of autonomous memory alveolar macrophages requires T cell help and is critical to trained immunity. Cell 175, 1634–1650.e1617 (2018).

Article 
CAS 
PubMed 

Google Scholar 

D’Agostino, M. R. et al. Airway macrophages mediate mucosal vaccine-induced trained innate immunity against Mycobacterium tuberculosis in early stages of infection. J. Immunol. 205, 2750–2762 (2020).

Article 
PubMed 

Google Scholar 

Mata, E. et al. Pulmonary BCG induces lung-resident macrophage activation and confers long-term protection against tuberculosis. Sci. Immunol. 6, eabc2934 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Jeyanathan, M. et al. Parenteral BCG vaccine induces lung-resident memory macrophages and trained immunity via the gut-lung axis. Nat. Immunol. 23, 1687–1702 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Ravesloot-Chavez, M. M., Van Dis, E. & Stanley, S. A. The innate immune response to Mycobacterium tuberculosis infection. Annu Rev. Immunol. 39, 611–637 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Larsen, S. E., Williams, B. D., Rais, M., Coler, R. N. & Baldwin, S. L. It takes a village: the multifaceted immune response to Mycobacterium tuberculosis infection and vaccine-induced immunity. Front. Immunol. 13, 840225 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kim, H., Choi, H. G. & Shin, S. J. Bridging the gaps to overcome major hurdles in the development of next-generation tuberculosis vaccines. Front. Immunol. 14, 1193058 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Morrison, H. & McShane, H. Local pulmonary immunological biomarkers in tuberculosis. Front. Immunol. 12, 640916 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Huang, X., Lowrie, D. B., Fan, X. Y. & Hu, Z. Natural products in anti-tuberculosis host-directed therapy. Biomed. Pharmacother. 171, 116087 (2024).

Article 
CAS 
PubMed 

Google Scholar 

Tanner, R., O’Shea, M. K., Fletcher, H. A. & McShane, H. In vitro mycobacterial growth inhibition assays: a tool for the assessment of protective immunity and evaluation of tuberculosis vaccine efficacy. Vaccine 34, 4656–4665 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Tanner, R. et al. The in vitro direct mycobacterial growth inhibition assay (MGIA) for the early evaluation of TB vaccine candidates and assessment of protective immunity: a protocol for non-human primate cells. F1000Res 10, 257 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Tanner, R. et al. A non-human primate in vitro functional assay for the early evaluation of TB vaccine candidates. NPJ Vaccines 6, 3 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Painter, H. et al. Demonstrating the utility of the ex vivo murine mycobacterial growth inhibition assay (MGIA) for high-throughput screening of tuberculosis vaccine candidates against multiple Mycobacterium tuberculosis complex strains. Tuberculosis 146, 102494 (2024).

Article 
CAS 
PubMed 

Google Scholar 

Hoft, S. G. et al. Imprinting of gut-homing receptors on Mtb-specific Th1* cells is associated with reduced lung homing after gavage BCG vaccination of Rhesus macaques. mBio 14, e0022023 (2023).

Article 
PubMed 

Google Scholar 

Nemeth, J. et al. Contained Mycobacterium tuberculosis infection induces concomitant and heterologous protection. PLoS Pathog. 16, e1008655 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hamasur, B. et al. Rapid diagnosis of tuberculosis by detection of mycobacterial lipoarabinomannan in urine. J. Microbiol. Methods 45, 41–52 (2001).

Article 
CAS 
PubMed 

Google Scholar 

Flores, J., Cancino, J. C. & Chavez-Galan, L. Lipoarabinomannan as a point-of-care assay for diagnosis of tuberculosis: how far are we to use it? Front. Microbiol. 12, 638047 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Gu, W. F. et al. Effectiveness of Histopathological Examination of Ultrasound-guided Puncture Biopsy Samples for Diagnosis of Extrapulmonary Tuberculosis. Biomed. Environ. Sci. 37, 170–177 (2024).

PubMed 

Google Scholar 

Bohrer, A. C. et al. Eosinophils are part of the granulocyte response in tuberculosis and promote host resistance in mice. J. Exp. Med. 218, e20210469 (2021).

Hu, Z. et al. Pathomorphological characteristics of tuberculous placenta and its clinical implication. Diagn. Pathol. 18, 128 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Saktiawati, A. M. I., Putera, D. D., Setyawan, A., Mahendradhata, Y. & van der Werf, T. S. Diagnosis of tuberculosis through breath test: a systematic review. EBioMedicine 46, 202–214 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Phillips, M. et al. Point-of-care breath test for biomarkers of active pulmonary tuberculosis. Tuberculosis 92, 314–320 (2012).

Article 
PubMed 

Google Scholar 

Coussens, A. K. et al. Classification of early tuberculosis states to guide research for improved care and prevention: an international Delphi consensus exercise. Lancet Respir. Med. 12, 484–498 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar 

Gordon, S. B. et al. A framework for Controlled Human Infection Model (CHIM) studies in Malawi: report of a Wellcome Trust workshop on CHIM in Low Income Countries held in Blantyre, Malawi. Wellcome Open Res. 2, 70 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Minassian, A. M. et al. A human challenge model for Mycobacterium tuberculosis using Mycobacterium bovis bacille Calmette-Guerin. J. Infect. Dis. 205, 1035–1042 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Harris, S. A. et al. Evaluation of a human BCG challenge model to assess antimycobacterial immunity induced by BCG and a candidate tuberculosis vaccine, MVA85A, alone and in combination. J. Infect. Dis. 209, 1259–1268 (2014).

Article 
CAS 
PubMed 

Google Scholar 

Blazevic, A. et al. Phase 1 open-label dose escalation trial for the development of a human bacillus Calmette-Guerin challenge model for assessment of tuberculosis immunity in vivo. J. Infect. Dis. 229, 1498–1508 (2024).

Article 
PubMed 

Google Scholar 

Satti, I. et al. Safety of a controlled human infection model of tuberculosis with aerosolised, live-attenuated Mycobacterium bovis BCG versus intradermal BCG in BCG-naive adults in the UK: a dose-escalation, randomised, controlled, phase 1 trial. Lancet Infect. Dis. 24, 909–921 (2024).

Davids, M. et al. A human lung challenge model to evaluate the safety and immunogenicity of PPD and live bacillus Calmette-Guerin. Am. J. Respir. Crit. Care Med. 201, 1277–1291 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Basu Roy, R. et al. An auto-luminescent fluorescent BCG whole blood assay to enable evaluation of paediatric mycobacterial responses using minimal blood volumes. Front. Pediatr. 7, 151 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Bekeredjian-Ding, I. et al. Human challenge trial workshop: focus on quality requirements for challenge agents, Langen, Germany, October 22, 2019. Biologicals 66, 53–61 (2020).

Article 
PubMed 

Google Scholar 

Wang, X. et al. Development of an engineered Mycobacterium tuberculosis strain for a safe and effective tuberculosis human challenge model. bioRxiv https://doi.org/10.1101/2023.11.19.567569 (2023).

Balasingam, S. et al. Review of the current TB human infection studies for use in accelerating TB vaccine development: a meeting report. J. Infect. Dis. 230, e457–e464 (2024).

Donald, P. R. et al. Droplets, dust and guinea pigs: an historical review of tuberculosis transmission research, 1878-1940. Int. J. Tuberc. Lung Dis. 22, 972–982 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Plumlee, C. R. et al. Ultra-low dose aerosol infection of mice with Mycobacterium tuberculosis more closely models human tuberculosis. Cell Host Microbe 29, 68–82 e65 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Vidal, S. J. et al. Attenuated Mycobacterium tuberculosis vaccine protection in a low-dose murine challenge model. iScience 26, 106963 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Plumlee, C. R. et al. Assessing vaccine-mediated protection in an ultra-low dose Mycobacterium tuberculosis murine model. PLoS Pathog. 19, e1011825 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kwon, K. W. et al. Immunogenicity and protective efficacy of RipA, a peptidoglycan hydrolase, against Mycobacterium tuberculosis Beijing outbreak strains. Vaccine 42, 1941–1952 (2024).

Article 
CAS 
PubMed 

Google Scholar 

Smith, C. M. et al. Host-pathogen genetic interactions underlie tuberculosis susceptibility in genetically diverse mice. Elife 11, e74419 (2022).

Lai, R. et al. Host genetic background is a barrier to broadly effective vaccine-mediated protection against tuberculosis. J. Clin. Invest. 133, e167762 (2023).

Ahmed, M. et al. Immune correlates of tuberculosis disease and risk translate across species. Sci. Transl. Med. 12, eaay0233 (2020).

Kurtz, S. L. et al. The diversity outbred mouse population is an improved animal model of vaccination against tuberculosis that reflects heterogeneity of protection. mSphere 5, https://doi.org/10.1128/msphere.00097-20 (2020).

Kurtz, S. L. et al. Multiple genetic loci influence vaccine-induced protection against Mycobacterium tuberculosis in genetically diverse mice. PLoS Pathog. 20, e1012069 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar 

Leroux-Roels, I. et al. Improved CD4(+) T cell responses to Mycobacterium tuberculosis in PPD-negative adults by M72/AS01 as compared to the M72/AS02 and Mtb72F/AS02 tuberculosis candidate vaccine formulations: a randomized trial. Vaccine 31, 2196–2206 (2013).

Article 
CAS 
PubMed 

Google Scholar 

Tait, D. R. et al. Final analysis of a trial of M72/AS01(E) vaccine to prevent tuberculosis. N. Engl. J. Med. 381, 2429–2439 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Nemes, E. et al. The quest for vaccine-induced immune correlates of protection against tuberculosis. Vaccin. Insights 1, 165–181 (2022).

Article 

Google Scholar 

Hansen, S. G. et al. Prevention of tuberculosis in rhesus macaques by a cytomegalovirus-based vaccine. Nat. Med. 24, 130–143 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Larson, E. C. et al. Intravenous Bacille Calmette-Guerin vaccination protects simian immunodeficiency virus-infected macaques from tuberculosis. Nat. Microbiol. 8, 2080–2092 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Darrah, P. A. et al. Airway T cells are a correlate of i.v. Bacille Calmette-Guerin-mediated protection against tuberculosis in rhesus macaques. Cell Host Microbe 31, 962–977 e968 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Peters, J. M. et al. Protective intravenous BCG vaccination induces enhanced immune signaling in the airways. bioRxiv https://doi.org/10.1101/2023.07.16.549208 (2023).

Irvine, E. B. et al. Humoral correlates of protection against Mycobacterium tuberculosis following intravenous Bacille Calmette-Guerin vaccination in Rhesus macaques. bioRxiv https://doi.org/10.1101/2023.07.31.551245 (2023).

Simonson, A. W. et al. CD4 T cells and CD8alpha+ lymphocytes are necessary for intravenous BCG-induced protection against tuberculosis in macaques. bioRxiv https://doi.org/10.1101/2024.05.14.594183 (2024).

Liu, Y. E. et al. Blood transcriptional correlates of BCG-induced protection against tuberculosis in Rhesus macaques. Cell Rep. Med. 4, 101096 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Flores-Valdez, M. A., Kupz, A. & Subbian, S. Recent developments in mycobacteria-based live attenuated vaccine candidates for tuberculosis. Biomedicines 10, 2749 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Shah, M. & Dorman, S. E. Latent tuberculosis infection. N. Engl. J. Med. 385, 2271–2280 (2021).

Article 
PubMed 

Google Scholar 

Zhao, H. M. et al. Differential T cell responses against DosR-associated antigen Rv2028c in BCG-vaccinated populations with tuberculosis infection. J. Infect. 78, 275–280 (2019).

Article 
PubMed 

Google Scholar 

Jenum, S. et al. A phase I/II randomized trial of H56:IC31 vaccination and adjunctive cyclooxygenase-2-inhibitor treatment in tuberculosis patients. Nat. Commun. 12, 6774 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Day, T. A. et al. Safety and immunogenicity of the adjunct therapeutic vaccine ID93 + GLA-SE in adults who have completed treatment for tuberculosis: a randomised, double-blind, placebo-controlled, phase 2a trial. Lancet Respir. Med. 9, 373–386 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Sagawa, Z. K. et al. Safety and immunogenicity of a thermostable ID93 + GLA-SE tuberculosis vaccine candidate in healthy adults. Nat. Commun. 14, 1138 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Chen, Z. et al. A multistage protein subunit vaccine as BCG-booster confers protection against Mycobacterium tuberculosis infection in murine models. Int. Immunopharmacol. 139, 112811 (2024).

Article 
CAS 
PubMed 

Google Scholar 

Simmons, J. D. et al. Immunological mechanisms of human resistance to persistent Mycobacterium tuberculosis infection. Nat. Rev. Immunol. 18, 575–589 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Chen, Z. Y. et al. Decreased expression of CD69 on T cells in tuberculosis infection resisters. Front. Microbiol. 11, 1901 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

Jalbert, E. et al. Comparative immune responses to Mycobacterium tuberculosis in people with latent infection or sterilizing protection. iScience 26, 107425 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Davies, L. R. L. et al. IFN-gamma independent markers of Mycobacterium tuberculosis exposure among male South African gold miners. EBioMedicine 93, 104678 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Krishnananthasivam, S. et al. An anti-LpqH human monoclonal antibody from an asymptomatic individual mediates protection against Mycobacterium tuberculosis. NPJ Vaccines 8, 127 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Cross, D. L. et al. MR1-restricted T cell clonotypes are associated with “resistance” to Mycobacterium tuberculosis infection. JCI Insight 9, e166505 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar 

Simmons, J. D. et al. Monocyte transcriptional responses to Mycobacterium tuberculosis associate with resistance to tuberculin skin test and interferon gamma release assay conversion. mSphere 7, e0015922 (2022).

Article 
PubMed 

Google Scholar 

Simmons, J. D. et al. Monocyte metabolic transcriptional programs associate with resistance to tuberculin skin test/interferon-gamma release assay conversion. J. Clin. Invest. 131, e140073 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Dill-McFarland, K. A. et al. Epigenetic programming of host lipid metabolism associates with resistance to TST/IGRA conversion after exposure to Mycobacterium tuberculosis. bioRxiv https://doi.org/10.1101/2024.02.27.582348 (2024).

Zhang, F. et al. HDAC6 contributes to human resistance against Mycobacterium tuberculosis infection via mediating innate immune responses. FASEB J. 35, e22009 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Weiner, J. et al. Changes in transcript, metabolite, and antibody reactivity during the early protective immune response in humans to Mycobacterium tuberculosis infection. Clin. Infect. Dis. 71, 30–40 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Ran, F. et al. Whole-transcriptome sequencing of phagocytes reveals a ceRNA network contributing to natural resistance to tuberculosis infection. Micro Pathog. 192, 106681 (2024).

Article 
CAS 

Google Scholar 

Nam, Y. et al. Harnessing artificial intelligence in multimodal omics data integration: paving the path for the next frontier in precision medicine. Annu. Rev. Biomed. Data Sci. 7, 225–250 (2024).

Article 
PubMed 

Google Scholar 



Source link

Follow on Google News Follow on Flipboard
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email Copy Link
Previous ArticleHouse Speaker Mike Johnson criticizes Obamacare, promises “major reforms” if President Trump wins
Next Article Nursing professor wins Nightingale Research Award
Paul E.
  • Website

Related Posts

Kentucky leaders emphasize whooping cough vaccination

October 31, 2024

Safety, efficacy and immunogenicity of aerosolized Ad5-nCoV COVID-19 vaccine in a non-inferiority randomized controlled trial

October 31, 2024

Trust is important, but increasing vaccination rates also requires three things

October 31, 2024
Leave A Reply Cancel Reply

Latest Posts

Health Canada approves Novartis’ KISQALI® for HR+/HER2- early breast cancer patients at high risk of recurrence

Sheriff, county lawyer seeking mental health funds at Minnesota State Capitol

Chronic absences have not disappeared. Research shows that poor children are most hurt.

Transport Secretary reveals overhaul of aging pneumatic transport systems

Latest Posts

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Welcome to Subjectional!

At Subjectional, we believe that informed opinions are the foundation of a vibrant society. Our mission is to provide insightful, engaging, and balanced information across a diverse range of topics that matter to you. Whether you’re interested in the latest developments in health, navigating the complexities of politics, staying updated on sports, exploring technological advancements, or advancing your career, we’ve got you covered.

Facebook X (Twitter) Instagram Pinterest YouTube

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Facebook X (Twitter) Instagram Pinterest
  • Home
  • About Us
  • Advertise with Us
  • Contact us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 subjectional. Designed by subjectional.

Type above and press Enter to search. Press Esc to cancel.